Ciarán Byrne


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Topic Modeling With Topological Data Analysis
Ciarán Byrne | Danijela Horak | Karo Moilanen | Amandla Mabona
Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing

Recent unsupervised topic modelling ap-proaches that use clustering techniques onword, token or document embeddings can ex-tract coherent topics. A common limitationof such approaches is that they reveal noth-ing about inter-topic relationships which areessential in many real-world application do-mains. We present an unsupervised topic mod-elling method which harnesses TopologicalData Analysis (TDA) to extract a topologicalskeleton of the manifold upon which contextu-alised word embeddings lie. We demonstratethat our approach, which performs on par witha recent baseline, is able to construct a networkof coherent topics together with meaningfulrelationships between them.