This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ChunhaoZhang
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large Vision-Language Models (LVLMs), despite their recent success, are hardly comprehensively tested for their cognitive abilities. Inspired by the prevalent use of the Cookie Theft task in human cognitive tests, we propose a novel evaluation benchmark to evaluate high-level cognitive abilities of LVLMs using images with rich semantics. The benchmark consists of 251 images along with comprehensive annotations. It defines eight reasoning capabilities and comprises an image description task and a visual question answering task. Our evaluation of well-known LVLMs shows that there is still a significant gap in cognitive abilities between LVLMs and humans.
This paper attempts to discover communication patterns automatically within dog vocalizations in a data-driven approach, which breaks the barrier previous approaches that rely on human prior knowledge on limited data. We present a self-supervised approach with HuBERT, enabling the accurate classification of phones, and an adaptive grammar induction method that identifies phone sequence patterns that suggest a preliminary vocabulary within dog vocalizations. Our results show that a subset of this vocabulary has substantial causality relations with certain canine activities, suggesting signs of stable semantics associated with these “words”.
How animals communicate and whether they have languages is a persistent curiosity of human beings. However, the study of animal communications has been largely restricted to data from field recordings or in a controlled environment, which is expensive and limited in scale and variety. In this paper, we take domestic Shiba Inu dogs as an example, and extract their vocal communications from large amount of YouTube videos of Shiba Inu dogs. We classify these clips into different scenarios and locations, and further transcribe the audio into phonetically symbolic scripts through a systematic process. We discover consistent phonetic symbols among their expressions, which indicates that Shiba Inu dogs can have systematic verbal communication patterns. This reusable framework produces the first-of-its-kind Shiba Inu vocal communication dataset that will be valuable to future research in both zoology and linguistics.