Christopher C. Yang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
A Framework for Developing and Evaluating Word Embeddings of Drug-named Entity
Mengnan Zhao | Aaron J. Masino | Christopher C. Yang
Proceedings of the BioNLP 2018 workshop

We investigate the quality of task specific word embeddings created with relatively small, targeted corpora. We present a comprehensive evaluation framework including both intrinsic and extrinsic evaluation that can be expanded to named entities beyond drug name. Intrinsic evaluation results tell that drug name embeddings created with a domain specific document corpus outperformed the previously published versions that derived from a very large general text corpus. Extrinsic evaluation uses word embedding for the task of drug name recognition with Bi-LSTM model and the results demonstrate the advantage of using domain-specific word embeddings as the only input feature for drug name recognition with F1-score achieving 0.91. This work suggests that it may be advantageous to derive domain specific embeddings for certain tasks even when the domain specific corpus is of limited size.