Christopher Burger


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
“Are Your Explanations Reliable?” Investigating the Stability of LIME in Explaining Text Classifiers by Marrying XAI and Adversarial Attack
Christopher Burger | Lingwei Chen | Thai Le
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

LIME has emerged as one of the most commonly referenced tools in explainable AI (XAI) frameworks that is integrated into critical machine learning applications (e.g., healthcare and finance). However, its stability remains little explored, especially in the context of text data, due to the unique text-space constraints. To address these challenges, in this paper, we first evaluate the inherent instability of LIME on text data to establish a baseline, and then propose a novel algorithm XAIFooler to perturb text inputs and manipulate explanations that casts investigation on the stability of LIME as a text perturbation optimization problem. XAIFooler conforms to the constraints to preserve text semantics and original prediction with small perturbations, and introduces Rank-biased Overlap (RBO) as a key part to guide the optimization of XAIFooler that satisfies all the requirements for explanation similarity measure. Extensive experiments on real-world text datasets demonstrate that XAIFooler significantly outperforms all baselines by large margins in its ability to manipulate LIME’s explanations with high semantic preservability.