Christian Richardson


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
When Scripts Diverge: Strengthening Low-Resource Neural Machine Translation Through Phonetic Cross-Lingual Transfer
Ammon Shurtz | Christian Richardson | Stephen D. Richardson
Proceedings of the 5th Workshop on Multilingual Representation Learning (MRL 2025)

Multilingual Neural Machine Translation (MNMT) models enhance translation quality for low-resource languages by exploiting cross-lingual similarities during training—a process known as knowledge transfer. This transfer is particularly effective between languages that share lexical or structural features, often enabled by a common orthography. However, languages with strong phonetic and lexical similarities but distinct writing systems experience limited benefits, as the absence of a shared orthography hinders knowledge transfer. To address this limitation, we propose an approach based on phonetic information that enhances token-level alignment across scripts by leveraging transliterations. We systematically evaluate several phonetic transcription techniques and strategies for incorporating phonetic information into NMT models. Our results show that using a shared encoder to process orthographic and phonetic inputs separately consistently yields the best performance for Khmer, Thai, and Lao in both directions with English, and that our custom Cognate-Aware Transliteration (CAT) method consistently improves translation quality over the baseline.