Christian Felt


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
Recognizing Euphemisms and Dysphemisms Using Sentiment Analysis
Christian Felt | Ellen Riloff
Proceedings of the Second Workshop on Figurative Language Processing

This paper presents the first research aimed at recognizing euphemistic and dysphemistic phrases with natural language processing. Euphemisms soften references to topics that are sensitive, disagreeable, or taboo. Conversely, dysphemisms refer to sensitive topics in a harsh or rude way. For example, “passed away” and “departed” are euphemisms for death, while “croaked” and “six feet under” are dysphemisms for death. Our work explores the use of sentiment analysis to recognize euphemistic and dysphemistic language. First, we identify near-synonym phrases for three topics (firing, lying, and stealing) using a bootstrapping algorithm for semantic lexicon induction. Next, we classify phrases as euphemistic, dysphemistic, or neutral using lexical sentiment cues and contextual sentiment analysis. We introduce a new gold standard data set and present our experimental results for this task.