ChenZhuo Zhao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
PMPO: Probabilistic Metric Prompt Optimization for Small and Large Language Models
ChenZhuo Zhao | Ziqian Liu | Xinda Wang | Junting Lu | Chaoyi Ruan
Findings of the Association for Computational Linguistics: EMNLP 2025

Prompt optimization is a practical and widely applicable alternative to fine tuning for improving large language model performance. Yet many existing methods evaluate candidate prompts by sampling full outputs, often coupled with self critique or human annotated preferences, which limits scalability, especially for smaller models or models that are not instruction tuned. We present PMPO (Probabilistic Metric Prompt Optimization), a unified framework that uses token level cross entropy as a direct, lightweight evaluation signal. PMPO locates low quality prompt segments via a masking based analysis and iteratively rewrites them to propose improved variants. Crucially, during evaluation, PMPO selects among variants by minimizing loss in a single forward pass, eliminating output sampling and human or judge based scoring for selection while still using standard generation only to propose rewrites. This unified, loss based strategy supports both supervised and preference based tasks. Across model sizes and datasets, PMPO outperforms prior prompt optimizers: it achieves the highest average accuracy on BBH, performs strongly on GSM8K and AQuA RAT, and raises AlpacaEval 2.0 win rates by over 19 points. These results demonstrate PMPO’s effectiveness, efficiency, and broad applicability.