Chenyue Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
A Token-pair Framework for Information Extraction from Dialog Transcripts in SereTOD Challenge
Chenyue Wang | Xiangxing Kong | Mengzuo Huang | Feng Li | Jian Xing | Weidong Zhang | Wuhe Zou
Proceedings of the Towards Semi-Supervised and Reinforced Task-Oriented Dialog Systems (SereTOD)

This paper describes our solution for Sere- TOD Challenge Track 1: Information extraction from dialog transcripts. We propose a token-pair framework to simultaneously identify entity and value mentions and link them into corresponding triples. As entity mentions are usually coreferent, we adopt a baseline model for coreference resolution. We exploit both annotated transcripts and unsupervised dialogs for training. With model ensemble and post-processing strategies, our system significantly outperforms the baseline solution and ranks first in triple f1 and third in entity f1.