This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ChenyangTao
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Uncertainty estimation (UE) of generative large language models (LLMs) is crucial for evaluating the reliability of generated sequences. A significant subset of UE methods utilize token probabilities to assess uncertainty, aggregating multiple token probabilities into a single UE score using a scoring function. Existing scoring functions for probability-based UE, such as length-normalized scoring and semantic contribution-based weighting, are designed to solve certain aspects of the problem but exhibit limitations, including the inability to handle biased probabilities and complex semantic dependencies between tokens. To address these issues, in this work, we propose Learnable Response Scoring (LARS) function, a novel scoring function that leverages supervised data to capture complex dependencies between tokens and probabilities, thereby producing more reliable and calibrated response scores in computing the uncertainty of LLM generations. Our comprehensive experiments across question-answering and arithmetical reasoning tasks with various datasets demonstrate that LARS significantly outperforms existing scoring functions, achieving improvements of up to 16% AUROC score.
Recent works improving LLM math reasoning with synthetic data have used unique setups, making comparison of data synthesis strategies impractical. This leaves many unanswered questions about the roles of different factors in the synthetic data pipeline, such as the impact of filtering low-quality problems. To address this gap, we introduce FLAMES, a Framework for LLM Assessment of Math rEasoning Data Synthesis, and perform a systematic study of 10 existing data synthesis strategies and multiple other factors impacting the performance of synthetic math reasoning data. Our FLAMES experiments provide several valuable insights about the optimal balance of difficulty and diversity of synthetic data. First, data agents designed to increase problem complexity lead to best improvements on most math metrics. Second, with a fixed data generation budget, keeping higher problem coverage is more important than keeping only problems with reliable solutions. Third, GSM8K- and MATH-based synthetic data can lead to improvements on competition-level benchmarks, showcasing easy-to-hard generalization. Leveraging insights from our FLAMES experiments, we design two novel data synthesis strategies for improving out-of-domain generalization and robustness. Further, we develop the FLAMES dataset, an effective blend of our novel and existing data synthesis strategies, outperforming public datasets on OlympiadBench (+15.7), CollegeMath (+4.5), GSMPlus (+6.5), and MATH (+3.1). Fine-tuning Qwen2.5-Math-7B on the FLAMES dataset achieves 81.4% on MATH, surpassing larger Llama3 405B, GPT-4o and Claude 3.5 Sonnet.
Generative Large Language Models (LLMs) are widely utilized for their excellence in various tasks. However, their tendency to produce inaccurate or misleading outputs poses a potential risk, particularly in high-stakes environments. Therefore, estimating the correctness of generative LLM outputs is an important task for enhanced reliability. Uncertainty Estimation (UE) in generative LLMs is an evolving domain, where SOTA probability-based methods commonly employ length-normalized scoring. In this work, we propose Meaning-Aware Response Scoring (MARS) as an alternative to length-normalized scoring for UE methods. MARS is a novel scoring function that considers the semantic contribution of each token in the generated sequence in the context of the question. We demonstrate that integrating MARS into UE methods results in a universal and significant improvement in UE performance. We conduct experiments using three distinct closed-book question-answering datasets across five popular pre-trained LLMs. Lastly, we validate the efficacy of MARS on a Medical QA dataset. Code can be found here.
Automatic melody-to-lyric generation is a task in which song lyrics are generated to go with a given melody. It is of significant practical interest and more challenging than unconstrained lyric generation as the music imposes additional constraints onto the lyrics. The training data is limited as most songs are copyrighted, resulting in models that underfit the complicated cross-modal relationship between melody and lyrics. In this work, we propose a method for generating high-quality lyrics without training on any aligned melody-lyric data. Specifically, we design a hierarchical lyric generation framework that first generates a song outline and second the complete lyrics. The framework enables disentanglement of training (based purely on text) from inference (melody-guided text generation) to circumvent the shortage of parallel data. We leverage the segmentation and rhythm alignment between melody and lyrics to compile the given melody into decoding constraints as guidance during inference. The two-step hierarchical design also enables content control via the lyric outline, a much-desired feature for democratizing collaborative song creation. Experimental results show that our model can generate high-quality lyrics that are more on-topic, singable, intelligible, and coherent than strong baselines, for example SongMASS, a SOTA model trained on a parallel dataset, with a 24% relative overall quality improvement based on human ratings. Our code is available at https://github.com/amazon-science/unsupervised-melody-to-lyrics-generation.
Collecting high quality conversational data can be very expensive for most applications and infeasible for others due to privacy, ethical, or similar concerns. A promising direction to tackle this problem is to generate synthetic dialogues by prompting large language models. In this work, we use a small set of expert-written conversations as in-context examples to synthesize a social conversation dataset using prompting. We perform several thorough evaluations of our synthetic conversations compared to human-collected conversations. This includes various dimensions of conversation quality with human evaluation directly on the synthesized conversations, and interactive human evaluation of chatbots fine-tuned on the synthetically generated dataset. We additionally demonstrate that this prompting approach is generalizable to multi-party conversations, providing potential to create new synthetic data for multi-party tasks. Our synthetic multi-party conversations were rated more favorably across all measured dimensions compared to conversation excerpts sampled from a human-collected multi-party dataset.
Natural language often exhibits inherent hierarchical structure ingrained with complex syntax and semantics. However, most state-of-the-art deep generative models learn embeddings only in Euclidean vector space, without accounting for this structural property of language. In this paper, we investigate text generation in a hyperbolic latent space to learn continuous hierarchical representations. An Adversarial Poincare Variational Autoencoder (APo-VAE) is presented, where both the prior and variational posterior of latent variables are defined over a Poincare ball via wrapped normal distributions. By adopting the primal-dual formulation of Kullback-Leibler divergence, an adversarial learning procedure is introduced to empower robust model training. Extensive experiments in language modeling, unaligned style transfer, and dialog-response generation demonstrate the effectiveness of the proposed APo-VAE model over VAEs in Euclidean latent space, thanks to its superb capabilities in capturing latent language hierarchies in hyperbolic space.
Although pre-trained big models (e.g., BERT, ERNIE, XLNet, GPT3 etc.) have delivered top performance in Seq2seq modeling, their deployments in real-world applications are often hindered by the excessive computations and memory demand involved. For many applications, including named entity recognition (NER), matching the state-of-the-art result under budget has attracted considerable attention. Drawing power from the recent advance in knowledge distillation (KD), this work presents a novel distillation scheme to efficiently transfer the knowledge learned from big models to their more affordable counterpart. Our solution highlights the construction of surrogate labels through the k-best Viterbi algorithm to distill knowledge from the teacher model. To maximally assimilate knowledge into the student model, we propose a multi-grained distillation scheme, which integrates cross entropy involved in conditional random field (CRF) and fuzzy learning. To validate the effectiveness of our proposal, we conducted a comprehensive evaluation on five NER benchmarks, reporting cross-the-board performance gains relative to competing prior-arts. We further discuss ablation results to dissect our gains.
Neural language models are often trained with maximum likelihood estimation (MLE), where the next word is generated conditioned on the ground-truth word tokens. During testing, however, the model is instead conditioned on previously generated tokens, resulting in what is termed exposure bias. To reduce this gap between training and testing, we propose using optimal transport (OT) to match the sequences generated in these two modes. We examine the necessity of adding Student-Forcing scheme during training with an imitation learning interpretation. An extension is further proposed to improve the OT learning for long sequences, based on the structural and contextual information of the text sequences. The effectiveness of the proposed method is validated on machine translation, text summarization, and text generation tasks.
Constituting highly informative network embeddings is an essential tool for network analysis. It encodes network topology, along with other useful side information, into low dimensional node-based feature representations that can be exploited by statistical modeling. This work focuses on learning context-aware network embeddings augmented with text data. We reformulate the network embedding problem, and present two novel strategies to improve over traditional attention mechanisms: (i) a content-aware sparse attention module based on optimal transport; and (ii) a high-level attention parsing module. Our approach yields naturally sparse and self-normalized relational inference. It can capture long-term interactions between sequences, thus addressing the challenges faced by existing textual network embedding schemes. Extensive experiments are conducted to demonstrate our model can consistently outperform alternative state-of-the-art methods.