This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ChenyangLi
Also published as:
晨阳 李
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper introduces WordArt Designer, a user-driven framework for artistic typography synthesis, relying on the Large Language Model (LLM). The system incorporates four key modules: the LLM Engine, SemTypo, StyTypo, and TexTypo modules. 1) The LLM Engine, empowered by the LLM (e.g. GPT-3.5), interprets user inputs and generates actionable prompts for the other modules, thereby transforming abstract concepts into tangible designs. 2) The SemTypo module optimizes font designs using semantic concepts, striking a balance between artistic transformation and readability. 3) Building on the semantic layout provided by the SemTypo module, the StyTypo module creates smooth, refined images. 4) The TexTypo module further enhances the design’s aesthetics through texture rendering, enabling the generation of inventive textured fonts. Notably, WordArt Designer highlights the fusion of generative AI with artistic typography. Experience its capabilities on ModelScope: https://www.modelscope.cn/studios/WordArt/WordArt.
One main challenge in building task-oriented dialogue systems is the limited amount of supervised training data available. In this work, we present a method for training retrieval-based dialogue systems using a small amount of high-quality, annotated data and a larger, unlabeled dataset. We show that pretraining using unlabeled data can bring better model performance with a 31% boost in Recall@1 compared with no pretraining. The proposed finetuning technique based on a small amount of high-quality, annotated data resulted in 26% offline and 33% online performance improvement in Recall@1 over the pretrained model. The model is deployed in an agent-support application and evaluated on live customer service contacts, providing additional insights into the real-world implications compared with most other publications in the domain often using asynchronous transcripts (e.g. Reddit data). The high performance of 74% Recall@1 shown in the customer service example demonstrates the effectiveness of this pretrain-finetune approach in dealing with the limited supervised data challenge.