This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ChenkunTan
Also published as:
ChenKun Tan,
臣坤 谭
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Unified vision large language models (VLLMs) have recently achieved impressive advancements in both multimodal understanding and generation, powering applications such as visual question answering and text-guided image synthesis. However, progress in unified VLLMs remains constrained by the lack of datasets that fully exploit the synergistic potential between these two core abilities. Existing datasets typically address understanding and generation in isolation, thereby limiting the performance of unified VLLMs. To bridge this critical gap, we introduce a novel dataset construction framework, UnifiedVisual, and present UnifiedVisual-240K, a high-quality dataset meticulously designed to facilitate mutual enhancement between multimodal understanding and generation. UnifiedVisual-240K seamlessly integrates diverse visual and textual inputs and outputs, enabling comprehensive cross-modal reasoning and precise text-to-image alignment. Our dataset encompasses a wide spectrum of tasks and data sources, ensuring rich diversity and addressing key shortcomings of prior resources. Extensive experiments demonstrate that models trained on UnifiedVisual-240K consistently achieve strong performance across a wide range of tasks. Notably, these models exhibit significant mutual reinforcement between multimodal understanding and generation, further validating the effectiveness of our framework and dataset. We believe UnifiedVisual represents a new growth point for advancing unified VLLMs and unlocking their full potential.
Large Language Models (LLMs) acquire extensive knowledge and remarkable abilities from extensive text corpora, making them powerful tools for various applications. To make LLMs more usable, aligning them with human preferences is essential. Existing alignment techniques, such as Reinforcement Learning from Human Feedback (RLHF) and Direct Preference Optimization (DPO), typically embed predefined preferences directly within the model’s parameters. These methods, however, often result in a static alignment that can not account for the diversity of human preferences in practical applications.In response to this challenge, we propose an effective method, MetaAlign, which aims to help LLMs dynamically align with various explicit or implicit preferences specified at inference time. Experimental results show that LLMs optimized on our meticulously constructed MetaAlign Dataset can effectively align with any preferences specified at the inference stage, validating the feasibility of MetaAlign. We hope that our work can provide some insights into the alignment of language models.
Multimodal large language models (MLLMs) have gained significant attention due to their impressive ability to integrate vision and language modalities. Recent advancements in MLLMs have primarily focused on improving performance through high-quality datasets, novel architectures, and optimized training strategies. However, in this paper, we identify a previously overlooked issue, language prior conflict, a mismatch between the inherent language priors of large language models (LLMs) and the language priors in training datasets. This conflict leads to suboptimal vision-language alignment, as MLLMs are prone to adapting to the language style of training samples. To address this issue, we propose a novel training method called Decoupled Proxy Alignment (DPA). DPA introduces two key innovations: (1) the use of a proxy LLM during pretraining to decouple the vision-language alignment process from language prior interference, and (2) dynamic loss adjustment based on visual relevance to strengthen optimization signals for visually relevant tokens. Extensive experiments demonstrate that DPA significantly mitigates the language prior conflict, achieving superior alignment performance across diverse datasets, model families, and scales. Our method not only improves the effectiveness of MLLM training but also shows exceptional generalization capabilities, making it a robust approach for vision-language alignment.
Recent advancements in model architectures and length extrapolation techniques have significantly extended the context length of large language models (LLMs), paving the way for their application in increasingly complex tasks. However, despite the growing capabilities of long-context LLMs, the safety issues in long-context scenarios remain underexplored. While safety alignment in short context has been widely studied, the safety concerns of long-context LLMs have not been adequately addressed. In this work, we introduce ${textbf{LongSafety}}$, a comprehensive safety alignment dataset for long-context LLMs, containing 10 tasks and 17k samples, with an average length of 40.9k tokens. Our experiments demonstrate that training with LongSafety can enhance long-context safety performance while enhancing short-context safety and preserving general capabilities. Furthermore, we demonstrate that long-context safety does not equal long-context alignment with short-context safety data and LongSafety has generalizing capabilities in context length and long-context safety scenarios.
As large language models (LLMs) rapidly evolve, they are increasingly being customized through fine-tuning to suit the specific needs of various applications. A critical aspect of this advancement is the alignment process, which ensures that these models perform tasks in ways that align with human values and expectations. Current alignment methods, such as direct preference optimization (DPO) and reinforcement learning from human feedback (RLHF), focus primarily on alignment during training phase. However, these methods often involve complex and resource-intensive training processes, posing significant challenge for their implementation. Therefore, we propose InferAligner, a simple yet effective method for harmlessness alignment during inference phase. InferAligner decouples harmlessness from helpfulness. During the training phase, it focuses solely on enhancing the target model’s capabilities on downstream tasks. In the inference phase, it utilizes safety steering vectors extracted from the aligned model to guide the target model towards harmlessness alignment. Experimental results show that our method can be very effectively applied to domain-specific models in finance, medicine, and mathematics, as well as to multimodal large language models (MLLMs) such as LLaVA. It significantly diminishes the attack success rate (ASR) of both harmful instructions and jailbreak instructions, while maintaining almost unchanged performance in downstream tasks.