Chengze Ge


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
High-Quality Medical Dialogue Synthesis for Improving EMR Generation
Chengze Ge | Yu Xu | Qi Shao | Shengping Liu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

High-quality doctor–patient dialogues, by which we mean realistic and human-like interactions that are intent-consistent, clinically faithful, and free of contradictions, are crucial for accurate Electronic Medical Record (EMR) generation. However, collecting large-scale real dialogues is costly and constrained by privacy regulations, while existing synthetic methods often yield rigid and medically inconsistent dialogues. We propose a scalable framework integrating (1) Intent Graph Planning for diverse clinical flows, (2) Dual-Agent Simulation for realistic doctor-patient interactions, and (3) Rule-Reward Quality Control combining explicit medical rules with a self-supervised reward model. Experiments across multiple clinical domains demonstrate that our synthesized dialogues significantly enhance realism, diversity, and downstream EMR quality, substantially reducing physician editing efforts. Our framework provides a practical and privacy-compliant solution for deploying robust clinical NLP systems.