This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ChengyuHuang
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Recent research has attempted to associate preference optimization (PO) performance with the underlying preference datasets. In this work, our observation is that the differences between the preferred response y+ and dispreferred response y- influence what LLMs can learn, which may not match the desirable differences to learn. Therefore, we use distance and reward margin to quantify these differences, and combine them to get Distance Calibrated Reward Margin (DCRM), a metric that measures the quality of a response pair for PO. Intuitively, DCRM encourages minimal noisy differences and maximal desired differences. With this, we study three types of commonly used preference datasets, classified along two axes: the source of the responses and the preference labeling function. We establish a general correlation between higher DCRM of the training set and better learning outcome. Inspired by this, we propose a best-of-N2 pairing method that selects response pairs with the highest DCRM. Empirically, in various settings, our method produces training datasets that can further improve models’ performance on AlpacaEval, MT-Bench, and Arena-Hard over the existing training sets.
While recent Large Language Models (LLMs) have proven useful in answering user queries, they are prone to hallucination, and their responses often lack credibility due to missing references to reliable sources. An intuitive solution to these issues would be to include in-text citations referring to external documents as evidence. While previous works have directly prompted LLMs to generate in-text citations, their performances are far from satisfactory, especially when it comes to smaller LLMs. In this work, we propose an effective training framework using fine-grained rewards to teach LLMs to generate highly supportive and relevant citations, while ensuring the correctness of their responses. We also conduct a systematic analysis of applying these fine-grained rewards to common LLM training strategies, demonstrating its advantage over conventional practices. We conduct extensive experiments on Question Answering (QA) datasets taken from the ALCE benchmark and validate the model’s generalizability using EXPERTQA. On LLaMA-2-7B, the incorporation of fine-grained rewards achieves the best performance among the baselines, even surpassing that of GPT-3.5-turbo.
Conversation disentanglement aims to group utterances into detached sessions, which is a fundamental task in processing multi-party conversations. Existing methods have two main drawbacks. First, they overemphasize pairwise utterance relations but pay inadequate attention to the utterance-to-context relation modeling. Second, huge amount of human annotated data is required for training, which is expensive to obtain in practice. To address these issues, we propose a general disentangle model based on bi-level contrastive learning. It brings closer utterances in the same session while encourages each utterance to be near its clustered session prototypes in the representation space. Unlike existing approaches, our disentangle model works in both supervised setting with labeled data and unsupervised setting when no such data is available. The proposed method achieves new state-of-the-art performance on both settings across several public datasets.
Traditional data augmentation aims to increase the coverage of the input distribution by generating augmented examples that strongly resemble original samples in an online fashion where augmented examples dominate training. In this paper, we propose an alternative perspective—a multi-task view (MTV) of data augmentation—in which the primary task trains on original examples and the auxiliary task trains on augmented examples. In MTV data augmentation, both original and augmented samples are weighted substantively during training, relaxing the constraint that augmented examples must resemble original data and thereby allowing us to apply stronger augmentation functions. In empirical experiments using four common data augmentation techniques on three benchmark text classification datasets, we find that using the MTV leads to higher and more robust performance than traditional augmentation.
Few-shot text classification is a fundamental NLP task in which a model aims to classify text into a large number of categories, given only a few training examples per category. This paper explores data augmentation—a technique particularly suitable for training with limited data—for this few-shot, highly-multiclass text classification setting. On four diverse text classification tasks, we find that common data augmentation techniques can improve the performance of triplet networks by up to 3.0% on average. To further boost performance, we present a simple training strategy called curriculum data augmentation, which leverages curriculum learning by first training on only original examples and then introducing augmented data as training progresses. We explore a two-stage and a gradual schedule, and find that, compared with standard single-stage training, curriculum data augmentation trains faster, improves performance, and remains robust to high amounts of noising from augmentation.
We present COVID-Q, a set of 1,690 questions about COVID-19 from 13 sources, which we annotate into 15 question categories and 207 question clusters. The most common questions in our dataset asked about transmission, prevention, and societal effects of COVID, and we found that many questions that appeared in multiple sources were not answered by any FAQ websites of reputable organizations such as the CDC and FDA. We post our dataset publicly at https://github.com/JerryWei03/COVID-Q. For classifying questions into 15 categories, a BERT baseline scored 58.1% accuracy when trained on 20 examples per category, and for a question clustering task, a BERT + triplet loss baseline achieved 49.5% accuracy. We hope COVID-Q can help either for direct use in developing applied systems or as a domain-specific resource for model evaluation.