Chengyu Cao


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Sparse Activation Editing for Reliable Instruction Following in Narratives
Runcong Zhao | Chengyu Cao | Qinglin Zhu | Xiucheng Ly | Shun Shao | Lin Gui | Ruifeng Xu | Yulan He
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Complex narrative contexts often challenge language models’ ability to follow instructions, and existing benchmarks fail to capture these difficulties. To address this, we propose Concise-SAE, a training-free framework that improves instruction following by identifying and editing instruction-relevant neurons using only natural language instructions, without requiring labelled data. To thoroughly evaluate our method, we introduce FreeInstruct, a diverse and realistic benchmark that highlights the challenges of instruction following in narrative-rich settings. While initially motivated by complex narratives, Concise-SAE demonstrates state-of-the-art instruction adherence across varied tasks without compromising generation quality.