Chengshuai Shi


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
From Cross-Task Examples to In-Task Prompts: A Graph-Based Pseudo-Labeling Framework for In-context Learning
Zihan Chen | Song Wang | Xingbo Fu | Chengshuai Shi | Zhenyu Lei | Cong Shen | Jundong Li
Findings of the Association for Computational Linguistics: EMNLP 2025

The capability of in-context learning (ICL) enables large language models (LLMs) to perform novel tasks without parameter updates by conditioning on a few input-output examples. However, collecting high-quality examples for new or challenging tasks can be costly and labor-intensive. In this work, we propose a cost-efficient two-stage pipeline that reduces reliance on LLMs for data labeling. Our approach first leverages readily available cross-task examples to prompt an LLM and pseudo-label a small set of target task instances. We then introduce a graph-based label propagation method that spreads label information to the remaining target examples without additional LLM queries. The resulting fully pseudo-labeled dataset is used to construct in-task demonstrations for ICL. This pipeline combines the flexibility of cross-task supervision with the scalability of LLM-free propagation. Experiments across five tasks demonstrate that our method achieves strong performance while lowering labeling costs.