Chengruidong Zhang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
LeanK: Learnable K Cache Channel Pruning for Efficient Decoding
Yike Zhang | Zhiyuan He | Huiqiang Jiang | Chengruidong Zhang | Yuqing Yang | Jianyong Wang | Lili Qiu
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Large language models (LLMs) enable long-context tasks but face efficiency challenges due to the growing key-value (KV) cache. We propose LeanK, a learning-based method that prunes unimportant key (K) cache channels by leveraging static channel sparsity. LeanK reduces GPU memory and accelerates decoding without sacrificing accuracy. Experiments demonstrate up to 70% K cache and 16%–18% V cache memory reduction, and 1.45× decoding speedup. We also provide insights into model channels and attention heads during long-context inference by analyzing the learned importance distribution. Our code is anonymously available at https://anonymous.4open.science/r/LeanK-7A87/README.md.