Chengrui Huang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
TTPA: Token-level Tool-use Preference Alignment Training Framework with Fine-grained Evaluation
Chengrui Huang | Shen Gao | Zhengliang Shi | Dongsheng Wang | Shuo Shang
Findings of the Association for Computational Linguistics: EMNLP 2025

Existing tool-learning methods usually rely on supervised fine-tuning, they often overlook fine-grained optimization of internal tool call details, leading to limitations in preference alignment and error discrimination. To overcome these challenges, we propose **T**oken-level **T**ool-use **P**reference **A**lignment Training Framework (TTPA), a training paradigm for constructing token-level tool-use preference datasets that align LLMs with fine-grained preferences using a novel error-oriented scoring mechanism. TTPA first introduces reversed dataset construction, a method for creating high-quality, multi-turn tool-use datasets by reversing the generation flow. Additionally, we propose _Preference Oriented Tool-use Dataset Construction_ to capture fine-grained preferences by modeling token-level differences during generation. To address biases in scoring, we introduce the _Error-oriented Scoring Mechanism_, which quantifies tool-call errors and can be used as a training signal. Extensive experiments on three diverse benchmark datasets demonstrate that TTPA significantly improves tool-using performance while showing strong generalization ability across models and datasets.

2024

pdf bib
360∘REA: Towards A Reusable Experience Accumulation with 360∘ Assessment for Multi-Agent System
Shen Gao | Hao Li | Zhengliang Shi | Chengrui Huang | Quan Tu | Shuo Shang | Zhiliang Tian | Minlie Huang
Findings of the Association for Computational Linguistics: ACL 2024