Chengbing Wang


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Decoding in Latent Spaces for Efficient Inference in LLM-based Recommendation
Chengbing Wang | Yang Zhang | Zhicheng Wang | Tianhao Shi | Keqin Bao | Fuli Feng | Tat-Seng Chua
Findings of the Association for Computational Linguistics: EMNLP 2025

Fine-tuning large language models (LLMs) for recommendation in a generative manner has delivered promising results, but encounters significant inference overhead due to autoregressive decoding in the language space. This work explores bypassing language-space decoding by directly matching candidate items with the LLM’s internal thought representations in the latent space, eliminating the time-consuming autoregressive process to reduce computational costs. Towards this, we introduce Light Latent-space Decoding (L2D), an effective and efficient latent-space decoding method. L2D represents user-preferred items by using the hidden states of test sequences reflecting the LLM’s internal thought, and obtains candidate item representations from the hidden states of training sequences labeled with the corresponding candidate items. It then matches the two types of representations to decode items, achieving latent-space decoding. In this way, it enables efficient decoding without altering the LLM’s generative tuning paradigm, thereby preserving performance. Extensive empirical results demonstrate that L2D is more than 10x faster than language-space decoding while maintaining or enhancing performance.