Chen Li

Other people with similar names: Chen Li, Chen Li, Chen Li, Chen Li, Chen Li

Unverified author pages with similar names: Chen Li


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
We-Math: Does Your Large Multimodal Model Achieve Human-like Mathematical Reasoning?
Runqi Qiao | Qiuna Tan | Guanting Dong | MinhuiWu MinhuiWu | Chong Sun | Xiaoshuai Song | Jiapeng Wang | Zhuoma GongQue | Shanglin Lei | YiFan Zhang | Zhe Wei | Miaoxuan Zhang | Runfeng Qiao | Xiao Zong | Yida Xu | Peiqing Yang | Zhimin Bao | Muxi Diao | Chen Li | Honggang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Visual mathematical reasoning, as a fundamental visual reasoning ability, has received widespread attention from the Large Multimodal Models (LMMs) community. Existing benchmarks mainly focus more on the end-to-end performance, but neglect the underlying principles of knowledge acquisition and generalization. Instead, we introduce WE-MATH, the first benchmark specifically designed to explore the problem-solving principles. We meticulously collect 6.5K visual math problems and decompose them into 10.9K step-level questions for evaluation, spanning 5 layers of knowledge granularity and 67 hierarchical knowledge concepts. Specifically, we decompose composite problems into sub-problems according to the required knowledge concepts and introduce a novel four-dimensional metric to hierarchically assess inherent issues in LMMs’ reasoning process. With WE-MATH, we conduct a thorough evaluation of existing LMMs in visual mathematical reasoning and provide comprehensive analysis and insight for future development. We anticipate that WE-MATH will open new pathways for advancements in visual mathematical reasoning for LMMs. Data and code are available at https://github.com/We-Math/We-Math.

pdf bib
V-Oracle: Making Progressive Reasoning in Deciphering Oracle Bones for You and Me
Runqi Qiao | Qiuna Tan | Guanting Dong | MinhuiWu MinhuiWu | Jiapeng Wang | YiFan Zhang | Zhuoma GongQue | Chong Sun | Yida Xu | Yadong Xue | Ye Tian | Zhimin Bao | Lan Yang | Chen Li | Honggang Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Oracle Bone Script (OBS) is a vital treasure of human civilization, rich in insights from ancient societies. However, the evolution of written language over millennia complicates its decipherment. In this paper, we propose V-Oracle, an innovative framework that utilizes Large Multi-modal Models (LMMs) for interpreting OBS. V-Oracle applies principles of pictographic character formation and frames the task as a visual question-answering (VQA) problem, establishing a multi-step reasoning chain. It proposes a multi-dimensional data augmentation for synthesizing high-quality OBS samples, and also implements a multi-phase oracle alignment tuning to improve LMMs’ visual reasoning capabilities. Moreover, to bridge the evaluation gap in the OBS field, we further introduce Oracle-Bench, a comprehensive benchmark that emphasizes process-oriented assessment and incorporates both standard and out-of-distribution setups for realistic evaluation. Extensive experimental results can demonstrate the effectiveness of our method in providing quantitative analyses and superior deciphering capability.