This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
CharlottePouw
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
We analyze the syntactic sensitivity of Text-to-Speech (TTS) systems using methods inspired by psycholinguistic research. Specifically, we focus on the generation of intonational phrase boundaries, which can often be predicted by identifying syntactic boundaries within a sentence. We find that TTS systems struggle to accurately generate intonational phrase boundaries in sentences where syntactic boundaries are ambiguous (e.g., garden path sentences or sentences with attachment ambiguity). In these cases, systems need superficial cues such as commas to place boundaries at the correct positions. In contrast, for sentences with simpler syntactic structures, we find that systems do incorporate syntactic cues beyond surface markers. Finally, we finetune models on sentences without commas at the syntactic boundary positions, encouraging them to focus on more subtle linguistic cues. Our findings indicate that this leads to more distinct intonation patterns that better reflect the underlying structure.
Human listeners effortlessly compensate for phonological changes during speech perception, often unconsciously inferring the intended sounds. For example, listeners infer the underlying /n/ when hearing an utterance such as “clea[m] pan”, where [m] arises from place assimilation to the following labial [p]. This article explores how the neural speech recognition model Wav2Vec2 perceives assimilated sounds, and identifies the linguistic knowledge that is implemented by the model to compensate for assimilation during Automatic Speech Recognition (ASR). Using psycholinguistic stimuli, we systematically analyze how various linguistic context cues influence compensation patterns in the model’s output. Complementing these behavioral experiments, our probing experiments indicate that the model shifts its interpretation of assimilated sounds from their acoustic form to their underlying form in its final layers. Finally, our causal intervention experiments suggest that the model relies on minimal phonological context cues to accomplish this shift. These findings represent a step towards better understanding the similarities and differences in phonological processing between neural ASR models and humans.
This paper lays the groundwork for initiating research into Source Language Identification; the task of identifying the original language of a machine-translated text. We contribute a dataset of translations from a typologically diverse spectrum of languages into English and use it to set initial baselines for this novel task.
An inclusive society needs to facilitate access to information for all of its members, including citizens with low literacy and with non-native language skills. We present an approach to assess Dutch text complexity on the sentence level and conduct an interpretability analysis to explore the link between neural models and linguistic complexity features. Building on these findings, we develop the first contextual lexical simplification model for Dutch and publish a pilot dataset for evaluation. We go beyondprevious work which primarily targeted lexical substitution and propose strategies for adjusting the model’s linguistic register to generate simpler candidates. Our results indicate that continual pre-training and multi-task learning with conceptually related tasks are promising directions for ensuring the simplicity of the generated substitutions.
When humans read a text, their eye movements are influenced by the structural complexity of the input sentences. This cognitive phenomenon holds across languages and recent studies indicate that multilingual language models utilize structural similarities between languages to facilitate cross-lingual transfer. We use sentence-level eye-tracking patterns as a cognitive indicator for structural complexity and show that the multilingual model XLM-RoBERTa can successfully predict varied patterns for 13 typologically diverse languages, despite being fine-tuned only on English data. We quantify the sensitivity of the model to structural complexity and distinguish a range of complexity characteristics. Our results indicate that the model develops a meaningful bias towards sentence length but also integrates cross-lingual differences. We conduct a control experiment with randomized word order and find that the model seems to additionally capture more complex structural information.