Charlie Snell


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Non-Programmers Can Label Programs Indirectly via Active Examples: A Case Study with Text-to-SQL
Ruiqi Zhong | Charlie Snell | Dan Klein | Jason Eisner
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing

Can non-programmers annotate natural language utterances with complex programs that represent their meaning? We introduce APEL, a framework in which non-programmers select among candidate programs generated by a seed semantic parser (e.g., Codex). Since they cannot understand the candidate programs, we ask them to select indirectly by examining the programs’ input-ouput examples. For each utterance, APEL actively searches for a simple input on which the candidate programs tend to produce different outputs. It then asks the non-programmers only to choose the appropriate output, thus allowing us to infer which program is correct and could be used to fine-tune the parser. As a first case study, we recruited human non-programmers to use APEL to re-annotate SPIDER, a text-to-SQL dataset. Our approach achieved the same annotation accuracy as the original expert annotators (75%) and exposed many subtle errors in the original annotations.

2022

pdf bib
Context-Aware Language Modeling for Goal-Oriented Dialogue Systems
Charlie Snell | Sherry Yang | Justin Fu | Yi Su | Sergey Levine
Findings of the Association for Computational Linguistics: NAACL 2022

Goal-oriented dialogue systems face a trade-off between fluent language generation and task-specific control. While supervised learning with large language models is capable of producing realistic text, how to steer such responses towards completing a specific task without sacrificing language quality remains an open question. In this work, we formulate goal-oriented dialogue as a partially observed Markov decision process, interpreting the language model as a representation of both the dynamics and the policy. This view allows us to extend techniques from learning-based control, such as task relabeling, to derive a simple and effective method to finetune language models in a goal-aware way, leading to significantly improved task performance. We additionally introduce a number of training strategies that serve to better focus the model on the task at hand. We evaluate our method, Context-Aware Language Models (CALM), on a practical flight-booking task using AirDialogue. Empirically, CALM outperforms the state-of-the-art method by 7% in terms of task success, matching human-level task performance.