Charl Hendriks


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
BabyLMs for isiXhosa: Data-Efficient Language Modelling in a Low-Resource Context
Alexis Matzopoulos | Charl Hendriks | Hishaam Mahomed | Francois Meyer
Proceedings of the First Workshop on Language Models for Low-Resource Languages

The BabyLM challenge called on participants to develop sample-efficient language models. Submissions were pretrained on a fixed English corpus, limited to the amount of words children are exposed to in development (<100m). The challenge produced new architectures for data-efficient language modelling, outperforming models trained on trillions of words. This is promising for low-resource languages, where available corpora are limited to much less than 100m words. In this paper, we explore the potential of BabyLMs for low-resource languages, using the isiXhosa language as a case study. We pretrain two BabyLM architectures, ELC-BERT and MLSM, on an isiXhosa corpus. They outperform a vanilla pretrained model on POS tagging and NER, achieving notable gains (+3.2 F1) for the latter. In some instances, the BabyLMs even outperform XLM-R. Our findings show that data-efficient models are viable for low-resource languages, but highlight the continued importance, and lack of, high-quality pretraining data. Finally, we visually analyse how BabyLM architectures encode isiXhosa.