This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ChareseSmiley
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Code-switching is prevalent in multilingual communities but lacks adequate high-quality data for model development, especially for African languages. To address this, we present AfroCS-xs, a small human-validated synthetic code-switched dataset for four African languages (Afrikaans, Sesotho, Yoruba, isiZulu) and English within a specific domain—agriculture. Using large language models (LLMs), we generate code-switched sentences, including English translations, that are rigorously validated and corrected by native speakers. As a downstream evaluation task, we use this dataset to fine-tune different instruction-tuned LLMs for code-switched translation and compare their performance against machine translation (MT) models. Our results demonstrate that LLMs consistently improve in translation accuracy when fine-tuned on the high-quality AfroCS-xs dataset, highlighting that substantial gains can still be made with a low volume of data. We also observe improvements on natural code-switched and out-of-domain (personal finance) test sets. Overall, regardless of data size and prior exposure to a language, LLMs benefit from higher quality training data when translating code-switched texts in under-represented languages.
Mitigating entity bias is a critical challenge in Relation Extraction (RE), where models often rely excessively on entities, resulting in poor generalization. This paper presents a novel approach to address this issue by adapting a Variational Information Bottleneck (VIB) framework. Our method compresses entity-specific information while preserving task-relevant features. It achieves state-of-the-art performance on both general and financial domain RE datasets, excelling in in-domain settings (original test sets) and out-of-domain (modified test sets with type-constrained entity replacements). Our approach offers a robust, interpretable, and theoretically grounded methodology.
Understanding and effectively responding to email communication remains a critical yet complex challenge for current AI techniques, especially in corporate environments. These tasks are further complicated by the need for domain-specific knowledge, accurate entity recognition, and high precision to prevent costly errors. While recent advances in AI, specifically Large Language Models (LLMs), have made strides in natural language understanding, they often lack business-specific expertise required in such settings. In this work, we present Advanced Messaging Platform (AMP), a production-grade AI pipeline that automates email response generation at scale in real-world enterprise settings. AMP has been in production for more than a year, processing thousands of emails daily while maintaining high accuracy and adaptability to evolving business needs.
Miscalibration in Large Language Models (LLMs) undermines their reliability, highlighting the need for accurate confidence estimation. We introduce CCPS (Calibrating LLM Confidence by Probing Perturbed Representation Stability), a novel method analyzing internal representational stability in LLMs. CCPS applies targeted adversarial perturbations to final hidden states, extracts features reflecting the model’s response to these perturbations, and uses a lightweight classifier to predict answer correctness. CCPS was evaluated on LLMs from 8B to 32B parameters (covering Llama, Qwen, and Mistral architectures) using MMLU and MMLU-Pro benchmarks in both multiple-choice and open-ended formats. Our results show that CCPS significantly outperforms current approaches. Across four LLMs and three MMLU variants, CCPS reduces Expected Calibration Error by approximately 55% and Brier score by 21%, while increasing accuracy by 5 percentage points, Area Under the Precision-Recall Curve by 4 percentage points, and Area Under the Receiver Operating Characteristic Curve by 6 percentage points, all relative to the strongest prior method. CCPS delivers an efficient, broadly applicable, and more accurate solution for estimating LLM confidence, thereby improving their trustworthiness.
Domain-specific multilingual terminology is essential for accurate machine translation (MT) and cross-lingual NLP applications. We present a gold-standard terminology resource for the tax and financial education domains, built from curated governmental publications and covering seven typologically diverse languages: English, Spanish, Russian, Vietnamese, Korean, Chinese (traditional and simplified) and Haitian Creole. Using this resource, we assess various MT systems and LLMs on translation quality and term accuracy. We annotate over 3,000 terms for domain-specificity, facilitating a comparison between domain-specific and general term translations, and observe models’ challenges with specialized tax terms. We also analyze the case of terminology-aided translation, and the LLMs’ performance in extracting the translated term given the context. Our results highlight model limitations and the value of high-quality terminologies for advancing MT research in specialized contexts.
We introduce FinNLI, a benchmark dataset for Financial Natural Language Inference (FinNLI) across diverse financial texts like SEC Filings, Annual Reports, and Earnings Call transcripts. Our dataset framework ensures diverse premise-hypothesis pairs while minimizing spurious correlations. FinNLI comprises 21,304 pairs, including a high-quality test set of 3,304 instances annotated by finance experts. Evaluations show that domain shift significantly degrades general-domain NLI performance. The highest Macro F1 scores for pre-trained (PLMs) and large language models (LLMs) baselines are 74.57% and 78.62%, respectively, highlighting the dataset’s difficulty. Surprisingly, instruction-tuned financial LLMs perform poorly, suggesting limited generalizability. FinNLI exposes weaknesses in current LLMs for financial reasoning, indicating room for improvement.
Large language models (LLMs) exhibit pronounced conservative bias in relation extraction tasks, frequently defaulting to no_relation label when an appropriate option is unavailable. While this behavior helps prevent incorrect relation assignments, our analysis reveals that it also leads to significant information loss when reasoning is not explicitly included in the output. We systematically evaluate this trade-off across multiple prompts, datasets, and relation types, introducing the concept of Hobson’s choice to capture scenarios where models opt for safe but uninformative labels over hallucinated ones. Our findings suggest that conservative bias occurs twice as often as hallucination. To quantify this effect, we use SBERT and LLM prompts to capture the semantic similarity between conservative bias behaviors in constrained prompts and labels generated from semi-constrained and open-ended prompts.
Domain-specific machine translation (MT) poses significant challenges due to specialized terminology, particularly when translating across multiple languages with scarce resources. In this study, we present the first impact analysis of domain-specific terminology on multilingual MT for finance, focusing on European languages within the subdomain of macroeconomics. To this end, we construct a multi-parallel corpus from the European Central Bank, aligned across 22 languages. Using this resource, we compare open-source multilingual MT systems with large language models (LLMs) that possess multilingual capabilities. Furthermore, by developing and curating an English financial glossary, we propose a methodology to analyze the relationship between translation performance (into English) and the accuracy of financial term matching, obtaining significant correlation results. Finally, using the multi-parallel corpus and the English glossary, we automatically align a multilingual financial terminology, validating the English-Spanish alignments and incorporating them into our discussion. Our findings provide valuable insights into the current state of financial MT for European languages and offer resources for future research and system improvements.
Collecting labeled datasets in finance is challenging due to scarcity of domain experts and higher cost of employing them. While Large Language Models (LLMs) have demonstrated remarkable performance in data annotation tasks on general domain datasets, their effectiveness on domain specific datasets remains under-explored. To address this gap, we investigate the potential of LLMs as efficient data annotators for extracting relations in financial documents. We compare the annotations produced by three LLMs (GPT-4, PaLM 2, and MPT Instruct) against expert annotators and crowdworkers. We demonstrate that the current state-of-the-art LLMs can be sufficient alternatives to non-expert crowdworkers. We analyze models using various prompts and parameter settings and find that customizing the prompts for each relation group by providing specific examples belonging to those groups is paramount. Furthermore, we introduce a reliability index (LLM-RelIndex) used to identify outputs that may require expert attention. Finally, we perform an extensive time, cost and error analysis and provide recommendations for the collection and usage of automated annotations in domain-specific settings.
Pre-trained language models have shown impressive performance on a variety of tasks and domains. Previous research on financial language models usually employs a generic training scheme to train standard model architectures, without completely leveraging the richness of the financial data. We propose a novel domain specific Financial LANGuage model (FLANG) which uses financial keywords and phrases for better masking, together with span boundary objective and in-filing objective. Additionally, the evaluation benchmarks in the field have been limited. To this end, we contribute the Financial Language Understanding Evaluation (FLUE), an open-source comprehensive suite of benchmarks for the financial domain. These include new benchmarks across 5 NLP tasks in financial domain as well as common benchmarks used in the previous research. Experiments on these benchmarks suggest that our model outperforms those in prior literature on a variety of NLP tasks. Our models, code and benchmark data will be made publicly available on Github and Huggingface.
With the recent advance in large pre-trained language models, researchers have achieved record performances in NLP tasks that mostly focus on language pattern matching. The community is experiencing the shift of the challenge from how to model language to the imitation of complex reasoning abilities like human beings. In this work, we investigate the application domain of finance that involves real-world, complex numerical reasoning. We propose a new large-scale dataset, ConvFinQA, aiming to study the chain of numerical reasoning in conversational question answering. Our dataset poses great challenge in modeling long-range, complex numerical reasoning paths in real-world conversations. We conduct comprehensive experiments and analyses with both the neural symbolic methods and the prompting-based methods, to provide insights into the reasoning mechanisms of these two divisions. We believe our new dataset should serve as a valuable resource to push forward the exploration of real-world, complex reasoning tasks as the next research focus. Our dataset and code is publicly available at https://github.com/czyssrs/ConvFinQA.
The sheer volume of financial statements makes it difficult for humans to access and analyze a business’s financials. Robust numerical reasoning likewise faces unique challenges in this domain. In this work, we focus on answering deep questions over financial data, aiming to automate the analysis of a large corpus of financial documents. In contrast to existing tasks on general domain, the finance domain includes complex numerical reasoning and understanding of heterogeneous representations. To facilitate analytical progress, we propose a new large-scale dataset, FinQA, with Question-Answering pairs over Financial reports, written by financial experts. We also annotate the gold reasoning programs to ensure full explainability. We further introduce baselines and conduct comprehensive experiments in our dataset. The results demonstrate that popular, large, pre-trained models fall far short of expert humans in acquiring finance knowledge and in complex multi-step numerical reasoning on that knowledge. Our dataset – the first of its kind – should therefore enable significant, new community research into complex application domains. The dataset and code are publicly available at https://github.com/czyssrs/FinQA.
This paper presents the two systems we entered into the 2017 E2E NLG Challenge: TemplGen, a templated-based system and SeqGen, a neural network-based system. Through the automatic evaluation, SeqGen achieved competitive results compared to the template-based approach and to other participating systems as well. In addition to the automatic evaluation, in this paper we present and discuss the human evaluation results of our two systems.
We discuss the ethical implications of Natural Language Generation systems. We use one particular system as a case study to identify and classify issues, and we provide an ethics checklist, in the hope that future system designers may benefit from conducting their own ethics reviews based on our checklist.
In this paper, we discuss the results of the IUCL system in the NLI Shared Task 2017. For our system, we explore a variety of phonetic algorithms to generate features for Native Language Identification. These features are contrasted with one of the most successful type of features in NLI, character n-grams. We find that although phonetic features do not perform as well as character n-grams alone, they do increase overall F1 score when used together with character n-grams.