This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ChaoMa
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
In the industry, numerous tasks are deployed online. Traditional approaches often tackle each task separately by its own network, which leads to excessive costs for developing and scaling models, especially in the context of large language models. Although multi-task methods can save costs through parameter sharing, they often struggle to outperform single-task methods in real-world applications. To tackle these challenges, we present a three-stage multi-task learning framework for large language models. It involves task filtering, followed by fine-tuning on high-resource tasks, and finally fine-tuning on all tasks. We conducted comprehensive experiments in single-task and multi-task settings. Our approach, exemplified on different benchmarks, demonstrates that it is able to achieve performance comparable to the single-task method while reducing up to 90.9% of its overhead.
In this paper, we present a novel model for entity disambiguation that combines both local contextual information and global evidences through Limited Discrepancy Search (LDS). Given an input document, we start from a complete solution constructed by a local model and conduct a search in the space of possible corrections to improve the local solution from a global view point. Our search utilizes a heuristic function to focus more on the least confident local decisions and a pruning function to score the global solutions based on their local fitness and the global coherences among the predicted entities. Experimental results on CoNLL 2003 and TAC 2010 benchmarks verify the effectiveness of our model.