This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
ChangjiangGao
Also published as:
长江 高
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Cross-lingual context retrieval (extracting contextual information in one language based on requests in another) is a fundamental aspect of cross-lingual alignment, but the performance and mechanism of it for large language models (LLMs) remains unclear. In this paper, we evaluate the cross-lingual context retrieval of over 40 LLMs across 12 languages, using cross-lingual machine reading comprehension (xMRC) as a representative scenario. Our results show that post-trained open LLMs show strong cross-lingual context retrieval ability, comparable to closed-source LLMs such as GPT-4o, and their estimated oracle performances greatly improve after post-training. Our mechanism analysis shows that the cross-lingual context retrieval process can be divided into two main phases: question encoding and answer retrieval, which are formed in pre-training and post-training respectively. The phasing stability correlates with xMRC performance, and the xMRC bottleneck lies at the last model layers in the second phase, where the effect of post-training can be evidently observed. Our results also indicate that larger-scale pretraining cannot improve the xMRC performance. Instead, larger LLMs need further multilingual post-training to fully unlock their cross-lingual context retrieval potential.
Large Language Models have demonstrated impressive reasoning capabilities across multiple languages. However, the relationship between capabilities in different languages is less explored. In this work, we decompose the process of reasoning tasks into two separated components: knowledge retrieval and knowledge-free reasoning, and analyze the relationship between cross-lingual transferability and these two components. With adapted commonsense reasoning datasets and constructed knowledge-free reasoning datasets, we show that the knowledge-free reasoning capability can be nearly perfectly transferred across various source-target language directions despite the secondary impact of resource in some specific target languages, while cross-lingual knowledge retrieval significantly hinders the transfer. Moreover, by analyzing the hidden states and feed-forward network neuron activation during the reasoning, we show that higher similarity of hidden representations and larger overlap of activated neurons could explain the better cross-lingual transferability of knowledge-free reasoning than knowledge retrieval. Thus, we hypothesize that knowledge-free reasoning shares similar neurons in different languages for reasoning, while knowledge is stored separately in different languages.
The process of meaning composition, wherein smaller units like morphemes or words combine to form the meaning of phrases and sentences, is essential for human sentence comprehension. Despite extensive neurolinguistic research into the brain regions involved in meaning composition, a computational metric to quantify the extent of composition is still lacking. Drawing on the key-value memory interpretation of transformer feed-forward network blocks, we introduce the Composition Score, a novel model-based metric designed to quantify the degree of meaning composition during sentence comprehension. Experimental findings show that this metric correlates with brain clusters associated with word frequency, structural processing, and general sensitivity to words, suggesting the multifaceted nature of meaning composition during human sentence comprehension.
Recently, Large Language Models (LLMs) have shown impressive language capabilities, while most of them have very unbalanced performance across different languages. Multilingual alignment based on the translation parallel data is an effective method to enhance LLMs’ multilingual capabilities. In this work, we first discover and comprehensively investigate the spontaneous multilingual alignment of LLMs. Firstly, we find that LLMs instruction-tuned on the question translation data (i.e. without annotated answers) are able to encourage the alignment between English and a wide range of languages, even including those unseen during instruction-tuning. Additionally, we utilize different settings and mechanistic interpretability methods to analyze the LLM’s performance in the multilingual scenario comprehensively. Our work suggests that LLMs have enormous potential for improving multilingual alignment efficiently with great language generalization and task generalization.
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning. However, previous work challenges their out-of-context reasoning ability, i.e., the ability to infer information from their training data, instead of from the context or prompt. This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge. We designed a synthetic dataset with seven representative OCKR tasks to systematically assess the OCKR capabilities of LLMs. Using this dataset, we evaluated several LLMs and discovered that their proficiency in this aspect is limited, regardless of whether the knowledge is trained in a separate or adjacent training settings. Moreover, training the model to reason with reasoning examples does not result in significant improvement, while training the model to perform explicit knowledge retrieval helps for retrieving attribute knowledge but not the relation knowledge, indicating that the model’s limited OCKR capabilities are due to difficulties in knowledge retrieval. Furthermore, we treat cross-lingual knowledge transfer as a distinct form of OCKR, and evaluate this ability. Our results show that the evaluated model also exhibits limited ability in transferring knowledge across languages.
Despite their strong ability to retrieve knowledge in English, current large language models show imbalance abilities in different languages. Two approaches are proposed to address this, i.e., multilingual pretraining and multilingual instruction tuning. However, whether and how do such methods contribute to the cross-lingual knowledge alignment inside the models is unknown. In this paper, we propose CLiKA, a systematic framework to assess the cross-lingual knowledge alignment of LLMs in the Performance, Consistency and Conductivity levels, and explored the effect of multilingual pretraining and instruction tuning on the degree of alignment. Results show that: while both multilingual pretraining and instruction tuning are beneficial for cross-lingual knowledge alignment, the training strategy needs to be carefully designed. Namely, continued pretraining improves the alignment of the target language at the cost of other languages, while mixed pretraining affect other languages less. Also, the overall cross-lingual knowledge alignment, especially in the conductivity level, is unsatisfactory for all tested LLMs, and neither multilingual pretraining nor instruction tuning can substantially improve the cross-lingual knowledge conductivity.
Recent large language models (LLMs) have revealed strong abilities to understand natural language. Since most of them share the same basic structure, i.e. the transformer block, possible contributors to their success in the training process are scaling and instruction tuning. However, how these factors affect the models’ language perception is unclear. This work compares the self-attention of several existing LLMs (LLaMA, Alpaca and Vicuna) in different sizes (7B, 13B, 30B, 65B), together with eye saccade, an aspect of human reading attention, to assess the effect of scaling and instruction tuning on language perception. Results show that scaling enhances the human resemblance and improves the effective attention by reducing the trivial pattern reliance, while instruction tuning does not. However, instruction tuning significantly enhances the models’ sensitivity to instructions. We also find that current LLMs are consistently closer to non-native than native speakers in attention, suggesting a sub-optimal language perception of all models. Our code and data used in the analysis is available on GitHub.