Changhong Xia


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Trustworthiness and Self-awareness in Large Language Models: An Exploration through the Think-Solve-Verify Framework
Zhendong Liu | Changhong Xia | Wei He | Chongjun Wang
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

As Large Language Models (LLMs) become increasingly influential in reasoning tasks, ensuring their trustworthiness and introspective self-awareness is critical. This research introduces the Think-Solve-Verify (TSV) framework, an innovative strategy tailored to explore LLMs’ trustworthiness, introspective self-awareness, and collaborative reasoning. This method accentuates a model’s capability to construct introspective reasoning processes from answers and ensure their trustworthiness. The reasoning with TSV consistently performs at or near the top across the majority of datasets with a single interaction with LLM. Moreover, we refine the voting process of self-consistency within the Chain-of-Thought (CoT) approach, leading to notable accuracy enhancements. In our evaluations, this approach improved performance from 67.3% to 72.8% on the AQuA dataset. Furthermore, we delve into the model’s ability to explain the given answers, highlighting the significance of discerning genuine comprehension from mere guesswork.