Chan Lee


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Building Resource-Constrained Language Agents: A Korean Case Study on Chemical Toxicity Information
Hojun Cho | Donghu Kim | Soyoung Yang | Chan Lee | Hunjoo Lee | Jaegul Choo
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing: Industry Track

Language agents powered by large language models (LLMs) face significant deployment challenges in resource-constrained environments, particularly for specialized domains and less-common languages. This paper presents Tox-chat, a Korean chemical toxicity information agent devised within these limitations. We propose two key innovations: a context-efficient architecture that reduces token consumption through hierarchical section search, and a scenario-based dialogue generation methodology that effectively distills tool-using capabilities from larger models. Experimental evaluations demonstrate that our fine-tuned 8B parameter model substantially outperforms both untuned models and baseline approaches, in terms of DB faithfulness and preference. Our work offers valuable insights for researchers developing domain-specific language agents under practical constraints.