Chan Jong Im


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
University of Hildesheim at SemEval-2023 Task 1: Combining Pre-trained Multimodal and Generative Models for Image Disambiguation
Sebastian Diem | Chan Jong Im | Thomas Mandl
Proceedings of the 17th International Workshop on Semantic Evaluation (SemEval-2023)

Multimodal ambiguity is a challenge for understanding text and images. Large pre-trained models have reached a high level of quality already. This paper presents an implementation for solving a image disambiguation task relying solely on the knowledge captured in multimodal and language models. Within the task 1 of SemEval 2023 (Visual Word Sense Disambiguation), this approach managed to achieve an MRR of 0.738 using CLIP-Large and the OPT model for generating text. Applying a generative model to create more text given a phrase with an ambiguous word leads to an improvement of our results. The performance gain from a bigger language model is larger than the performance gain from using the lager CLIP model.