Chaitanya Dwivedi


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Personalized Dense Retrieval on Global Index for Voice-enabled Conversational Systems
Masha Belyi | Charlotte Dzialo | Chaitanya Dwivedi | Prajit Muppidi | Kanna Shimizu
Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing: Industry Track

Voice-controlled AI dialogue systems are susceptible to noise from phonetic variations and failure to resolve ambiguous entities. Typically, personalized entity resolution (ER) and/or query rewrites (QR) are deployed to recover from these error modes. Previous work in this field achieves personalization by constraining retrieval search space to personalized indices built from user’s historical interactions with the device. While constrained retrieval achieves high precision, predictions are limited to entities in recent user history, which offers low coverage of future requests. Further, maintaining individual indices for millions of users is memory intensive and difficult to scale. In this work, we propose a personalized entity retrieval system that is robust to phonetic noise and ambiguity but is not limited to a personalized index. We achieve this by embedding user listening preferences into a contextual query embedding used in retrieval. We demonstrate our model’s ability to correct multiple error modes and show 91% improvement over baseline on the entity retrieval task. Finally, we optimize the end-to-end approach to fit within online latency constraints while maintaining gains in performance.