Cao-Bach Nguyen


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
Curriculum Learning Meets Directed Acyclic Graph for Multimodal Emotion Recognition
Cam-Van Thi Nguyen | Cao-Bach Nguyen | Duc-Trong Le | Quang-Thuy Ha
Proceedings of the 2024 Joint International Conference on Computational Linguistics, Language Resources and Evaluation (LREC-COLING 2024)

Emotion recognition in conversation (ERC) is a crucial task in natural language processing and affective computing. This paper proposes MultiDAG+CL, a novel approach for Multimodal Emotion Recognition in Conversation (ERC) that employs Directed Acyclic Graph (DAG) to integrate textual, acoustic, and visual features within a unified framework. The model is enhanced by Curriculum Learning (CL) to address challenges related to emotional shifts and data imbalance. Curriculum learning facilitates the learning process by gradually presenting training samples in a meaningful order, thereby improving the model’s performance in handling emotional variations and data imbalance. Experimental results on the IEMOCAP and MELD datasets demonstrate that the MultiDAG+CL models outperform baseline models. We release the code for and experiments: https://github.com/vanntc711/MultiDAG-CL.