Can Xu

Other people with similar names: Can Xu

Unverified author pages with similar names: Can Xu


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
WarriorCoder: Learning from Expert Battles to Augment Code Large Language Models
Huawen Feng | Pu Zhao | Qingfeng Sun | Can Xu | Fangkai Yang | Lu Wang | Qianli Ma | Qingwei Lin | Saravan Rajmohan | Dongmei Zhang | Qi Zhang
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Despite recent progress achieved by code large language models (LLMs), their remarkable abilities are largely dependent on fine-tuning on the high-quality data, posing challenges for data collection and annotation. To address this, current methods often design various data flywheels to collect complex code instructions, enabling models to handle more intricate tasks. However, these approaches typically rely on off-the-shelf datasets and data augmentation from a limited set of proprietary LLMs (e.g., Claude, GPT4, and so on), which restricts the diversity of the constructed data and makes it prone to systemic biases. In this paper, we propose **WarriorCoder**, a novel paradigm learns from expert battles to address these limitations. Specifically, we create an arena where leading expert code LLMs challenge each other, with evaluations conducted by impartial judges. This competitive framework generates novel training data from scratch, leveraging the strengths of all participants. Experimental results show that **WarriorCoder** achieves state-of-the-art performance compared to previous models of the same size, even without relying on proprietary LLMs.