This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
CamilleGosset
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Nous nous intéressons dans cet article à l’extraction automatique de relations sémantiques d’hyperonymie et d’hyponymie à partir d’un corpus de spécialités métier. Le corpus regroupe des ouvrages et articles en français d’expertise juridique et a été partiellement annoté en termes-clés par des experts. Nous prétraitons ces annotations afin de pouvoir les retrouver dans ce corpus et obtenir un concept général pour extraire les relations entre ces termes. Nous décrivons une étude expérimentale qui compare plusieurs méthodes de classification appliquées sur des vecteurs de relations construits à partir d’un modèle Word2Vec. Nous comparons les résultats obtenus grâce à un jeu de données construit à partir de relations d’hyperonymie tirées d’un réseau lexico-sémantique français que nous inversons pour obtenir les relations d’hyponymie. Nos résultats montrent que nous obtenons une classification pouvant atteindre un taux d’exactitude de 92 %.
Cet article présente notre participation à l’édition 2021 du DÉfi Fouille de Textes (DEFT) et plus précisément à la première tâche liée à l’identification du profil clinique du patient. Cette tâche consiste à sélectionner, pour un document décrivant l’état d’un patient, les différents types de maladies rencontrées correspondant aux entrées génériques des chapitres du MeSH (Medical Subject Headings). Dans notre travail, nous nous sommes intéressés aux questions suivantes : (1) Comment améliorer les représentations vectorielles de documents, voire de classes ? (2) Comment apprendre des seuils de validation de classes ? Et (3) Une approche combinant apprentissage supervisé et similarité sémantique peut-elle apporter une meilleure performance à un système de classification multi-labels ?
Nous présentons dans cet article notre approche à base de règles conçue pour répondre à la tâche 3 de la campagne d’évaluation DEFT 2020. Selon le type d’information à extraire, nous construisons (1) une terminologie spécialisée à partir de ressources médicales et (2) un graphe orienté basé sur les informations extraites de la base de connaissances généraliste et de grande taille - JeuxDeMots.