This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
BrianNamee
Also published as:
Brian Mac Namee,
Brian Mac Namee
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Current methods for prompt learning in zero-shot scenarios widely rely on a development set with sufficient human-annotated data to select the best-performing prompt template a posteriori. This is not ideal because in a real-world zero-shot scenario of practical relevance, no labelled data is available. Thus, we propose a simple yet effective method for screening reasonable prompt templates in zero-shot text classification: Perplexity Selection (Perplection). We hypothesize that language discrepancy can be used to measure the efficacy of prompt templates, and thereby develop a substantiated perplexity-based scheme allowing for forecasting the performance of prompt templates in advance. Experiments show that our method leads to improved prediction performance in a realistic zero-shot setting, eliminating the need for any labelled examples.
We present a novel rational-centric framework with human-in-the-loop – Rationales-centric Double-robustness Learning (RDL) – to boost model out-of-distribution performance in few-shot learning scenarios. By using static semi-factual generation and dynamic human-intervened correction, RDL, acting like a sensible “inductive bias”, exploits rationales (i.e. phrases that cause the prediction), human interventions and semi-factual augmentations to decouple spurious associations and bias models towards generally applicable underlying distributions, which enables fast and accurate generalisation. Experimental results show that RDL leads to significant prediction benefits on both in-distribution and out-of-distribution tests, especially for few-shot learning scenarios, compared to many state-of-the-art benchmarks. We also perform extensive ablation studies to support in-depth analyses of each component in our framework.
Jensen-Shannon divergence (JSD) is a distribution similarity measurement widely used in natural language processing. In corpus comparison tasks, where keywords are extracted to reveal the divergence between different corpora (for example, social media posts from proponents of different views on a political issue), two variants of JSD have emerged in the literature. One of these uses a weighting based on the relative sizes of the corpora being compared. In this paper we argue that this weighting is unnecessary and, in fact, can lead to misleading results. We recommend that this weighted version is not used. We base this recommendation on an analysis of the JSD variants and experiments showing how they impact corpus comparison results as the relative sizes of the corpora being compared change.