This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
BrianHur
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Deep transformer models have been used to detect linguistic anomalies in patient transcripts for early Alzheimer’s disease (AD) screening. While pre-trained neural language models (LMs) fine-tuned on AD transcripts perform well, little research has explored the effects of the gender of the speakers represented by these transcripts. This work addresses gender confounding in dementia detection and proposes two methods: the Extended Confounding Filter and the Dual Filter, which isolate and ablate weights associated with gender. We evaluate these methods on dementia datasets with first-person narratives from patients with cognitive impairment and healthy controls. Our results show transformer models tend to overfit to training data distributions. Disrupting gender-related weights results in a deconfounded dementia classifier, with the trade-off of slightly reduced dementia detection performance.
Optimizing antibiotic dosing recommendations is a vital aspect of antimicrobial stewardship (AMS) programs aimed at combating antimicrobial resistance (AMR), a significant public health concern, where inappropriate dosing contributes to the selection of AMR pathogens. A key challenge is the extraction of dosing information, which is embedded in free-text clinical records and necessitates numerical transformations. This paper assesses the utility of Large Language Models (LLMs) in extracting essential prescription attributes such as dose, duration, active ingredient, and indication. We evaluate methods to optimize LLMs on this task against a baseline BERT-based ensemble model. Our findings reveal that LLMs can achieve exceptional accuracy by combining probabilistic predictions with deterministic calculations, enforced through functional prompting, to ensure data types and execute necessary arithmetic. This research demonstrates new prospects for automating aspects of AMS when no training data is available.
Identifying the reasons for antibiotic administration in veterinary records is a critical component of understanding antimicrobial usage patterns. This informs antimicrobial stewardship programs designed to fight antimicrobial resistance, a major health crisis affecting both humans and animals in which veterinarians have an important role to play. We propose a document classification approach to determine the reason for administration of a given drug, with particular focus on domain adaptation from one drug to another, and instance selection to minimize annotation effort.