Brandon Walker


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2020

pdf bib
News Aggregation with Diverse Viewpoint Identification Using Neural Embeddings and Semantic Understanding Models
Mark Carlebach | Ria Cheruvu | Brandon Walker | Cesar Ilharco Magalhaes | Sylvain Jaume
Proceedings of the 7th Workshop on Argument Mining

Today’s news volume makes it impractical for readers to get a diverse and comprehensive view of published articles written from opposing viewpoints. We introduce a transformer-based news aggregation system, composed of topic modeling, semantic clustering, claim extraction, and textual entailment that identifies viewpoints presented in articles within a semantic cluster and classifies them into positive, neutral and negative entailments. Our novel embedded topic model using BERT-based embeddings outperforms baseline topic modeling algorithms by an 11% relative improvement. We compare recent semantic similarity models in the context of news aggregation, evaluate transformer-based models for claim extraction on news data, and demonstrate the use of textual entailment models for diverse viewpoint identification.