Boris Zhestiankin


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2021

pdf bib
Zhestyatsky at SemEval-2021 Task 2: ReLU over Cosine Similarity for BERT Fine-tuning
Boris Zhestiankin | Maria Ponomareva
Proceedings of the 15th International Workshop on Semantic Evaluation (SemEval-2021)

This paper presents our contribution to SemEval-2021 Task 2: Multilingual and Cross-lingual Word-in-Context Disambiguation (MCL-WiC). Our experiments cover English (EN-EN) sub-track from the multilingual setting of the task. We experiment with several pre-trained language models and investigate an impact of different top-layers on fine-tuning. We find the combination of Cosine Similarity and ReLU activation leading to the most effective fine-tuning procedure. Our best model results in accuracy 92.7%, which is the fourth-best score in EN-EN sub-track.