Bolian Li


Fixing paper assignments

  1. Please select all papers that do not belong to this person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Reward-Shifted Speculative Sampling Is An Efficient Test-Time Weak-to-Strong Aligner
Bolian Li | Yanran Wu | Xinyu Luo | Ruqi Zhang
Proceedings of the 2025 Conference on Empirical Methods in Natural Language Processing

Aligning large language models (LLMs) with human preferences has become a critical step in their development. Recent research has increasingly focused on test-time alignment, where additional compute is allocated during inference to enhance LLM safety and reasoning capabilities. However, these test-time alignment techniques often incur substantial inference costs, limiting their practical application. We are inspired by the speculative sampling acceleration, which leverages a small draft model to efficiently predict future tokens, to address the efficiency bottleneck of test-time alignment. We introduce the reward-shifted speculative sampling (SSS) algorithm, in which the draft model is aligned with human preferences, while the target model remains unchanged. We theoretically demonstrate that the distributional shift between the aligned draft model and the unaligned target model can be exploited to recover the RLHF optimal solution without actually obtaining it, by modifying the acceptance criterion and bonus token distribution. Our algorithm achieves superior gold reward scores at a significantly reduced inference cost in test-time weak-to-strong alignment experiments, thereby validating both its effectiveness and efficiency.