Boheng Sheng


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
Dynamic Chunking and Selection for Reading Comprehension of Ultra-Long Context in Large Language Models
Boheng Sheng | Jiacheng Yao | Meicong Zhang | Guoxiu He
Proceedings of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)

Large language models (LLMs) often struggle to accurately read and comprehend extremely long texts. Current methods for improvement typically rely on splitting long contexts into fixed-length chunks. However, fixed truncation risks separating semantically relevant content, leading to ambiguity and compromising accurate understanding. To overcome this limitation, we propose a straightforward approach for dynamically separating and selecting chunks of long context, facilitating a more streamlined input for LLMs. In particular, we compute semantic similarities between adjacent sentences, using lower similarities to adaptively divide long contexts into variable-length chunks. We further train a question-aware classifier to select sensitive chunks that are critical for answering specific questions. Experimental results on both single-hop and multi-hop question-answering benchmarks show that the proposed approach consistently outperforms strong baselines. Notably, it maintains robustness across a wide range of input lengths, handling sequences of up to 256k tokens. Our datasets and code are available at the following link: https://github.com/ECNU-Text-Computing/DCS