This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
BingquanLiu
Also published as:
BingQuan Liu,
秉权 刘
Fixing paper assignments
Please select all papers that do not belong to this person.
Indicate below which author they should be assigned to.
Multimodal Emotion Recognition in Conversations (MERC) identifies utterance emotions by integrating both contextual and multimodal information from dialogue videos. Existing methods struggle to capture emotion shifts due to label replication and fail to preserve positive independent modality contributions during fusion. To address these issues, we propose a Dual Contrastive Learning Framework (DCLF) that enhances current MERC models without additional data. Specifically, to mitigate label replication effects, we construct context-aware contrastive pairs. Additionally, we assign pseudo-labels to distinguish modality-specific contributions. DCLF works alongside basic models to introduce semantic constraints at the utterance, context, and modality levels. Our experiments on two MERC benchmark datasets demonstrate performance gains of 4.67%-4.98% on IEMOCAP and 5.52%-5.89% on MELD, outperforming state-of-the-art approaches. Perturbation tests further validate DCLF’s ability to reduce label dependence. Additionally, DCLF incorporates emotion-sensitive independent modality features and multimodal fusion representations into final decisions, unlocking the potential contributions of individual modalities.
Emotion recognition in conversation (ERC), the task of discerning human emotions for each utterance within a conversation, has garnered significant attention in human-computer interaction systems. Previous ERC studies focus on speaker-specific information that predominantly stems from relationships among utterances, which lacks sufficient information around conversations. Recent research in ERC has sought to exploit pre-trained large language models (LLMs) with speaker modelling to comprehend emotional states. Although these methods have achieved the encouraging results, the extracted speaker-specific information struggles to indicate emotional dynamics. In this paper, motivated by the fact that speaker characteristics play a crucial role and LLMs have rich world knowledge, we present LaERC-S, a novel framework that stimulates LLMs to explore speaker characteristics involving the mental state and behavior of interlocutors, for accurate emotion predictions. To endow LLMs with these knowledge information, we adopt the two-stage learning to make the models reason speaker characteristics and track the emotion of the speaker in complex conversation scenarios. Extensive experiments on three benchmark datasets demonstrate the superiority of LaERC-S, reaching the new state-of-the-art.
This paper presents our approach to the MGT Detection Task 1, which focuses on detecting AI-generated content. The objective of this task is to classify texts as either machine-generated or human-written. We participated in Subtask A, which concentrates on English-only texts. We utilized the RoBERTa model for semantic feature extraction and the LLaMA3 model for probabilistic feature analysis. By integrating these features, we aimed to enhance the system’s classification accuracy. Our approach achieved strong results, with an F1 score of 0.7713 on Subtask A, ranking ninth among 36 teams. These results demonstrate the effectiveness of our feature integration strategy.
The fusion of language models (LMs) and knowledge graphs (KGs) is widely used in commonsense question answering, but generating faithful explanations remains challenging. Current methods often overlook path decoding faithfulness, leading to divergence between graph encoder outputs and model predictions. We identify confounding effects and LM-KG misalignment as key factors causing spurious explanations. To address this, we introduce the LM-KG Fidelity metric to assess KG representation reliability and propose the LM-KG Distribution-aware Alignment (LKDA) algorithm to improve explanation faithfulness. Without ground truth, we evaluate KG explanations using the proposed Fidelity-Sparsity Trade-off Curve. Experiments on CommonsenseQA and OpenBookQA show that LKDA significantly enhances explanation fidelity and model performance, highlighting the need to address distributional misalignment for reliable commonsense reasoning.
Previous works show that Pre-trained Language Models (PLMs) can capture factual knowledge. However, some analyses reveal that PLMs fail to perform it robustly, e.g., being sensitive to the changes of prompts when extracting factual knowledge. To mitigate this issue, we propose to let PLMs learn the deterministic relationship between the remaining context and the masked content. The deterministic relationship ensures that the masked factual content can be deterministically inferable based on the existing clues in the context. That would provide more stable patterns for PLMs to capture factual knowledge than randomly masking. Two pre-training tasks are further introduced to motivate PLMs to rely on the deterministic relationship when filling masks. Specifically, we use an external Knowledge Base (KB) to identify deterministic relationships and continuously pre-train PLMs with the proposed methods. The factual knowledge probing experiments indicate that the continuously pre-trained PLMs achieve better robustness in factual knowledge capturing. Further experiments on question-answering datasets show that trying to learn a deterministic relationship with the proposed methods can also help other knowledge-intensive tasks.
Recently, there has been a trend to investigate the factual knowledge captured by Pre-trained Language Models (PLMs). Many works show the PLMs’ ability to fill in the missing factual words in cloze-style prompts such as ”Dante was born in [MASK].” However, it is still a mystery how PLMs generate the results correctly: relying on effective clues or shortcut patterns? We try to answer this question by a causal-inspired analysis that quantitatively measures and evaluates the word-level patterns that PLMs depend on to generate the missing words. We check the words that have three typical associations with the missing words: knowledge-dependent, positionally close, and highly co-occurred. Our analysis shows: (1) PLMs generate the missing factual words more by the positionally close and highly co-occurred words than the knowledge-dependent words; (2) the dependence on the knowledge-dependent words is more effective than the positionally close and highly co-occurred words. Accordingly, we conclude that the PLMs capture the factual knowledge ineffectively because of depending on the inadequate associations.
This paper presents the second place system for the R2VQ: competence-based multimodal question answering shared task. The purpose of this task is to involve semantic&cooking roles and text-images objects when querying how well a system understands the procedure of a recipe. This task is approached with text-to-text generative model based on transformer architecture. As a result, the model can well generalise to soft constrained and other competence-based question answering problem. We propose label enclosed input method which help the model achieve significant improvement from 65.34 (baseline) to 91.3. In addition to describing the submitted system, the impact of model architecture and label selection are investigated along with remarks regarding error analysis. Finally, future works are presented.
Emotion Recognition in Conversation (ERC) has gained much attention from the NLP community recently. Some models concentrate on leveraging commonsense knowledge or multi-task learning to help complicated emotional reasoning. However, these models neglect direct utterance-knowledge interaction. In addition, these models utilize emotion-indirect auxiliary tasks, which provide limited affective information for the ERC task. To address the above issues, we propose a Knowledge-Interactive Network with sentiment polarity intensity-aware multi-task learning, namely KI-Net, which leverages both commonsense knowledge and sentiment lexicon to augment semantic information. Specifically, we use a self-matching module for internal utterance-knowledge interaction. Considering correlations with the ERC task, a phrase-level Sentiment Polarity Intensity Prediction (SPIP) task is devised as an auxiliary task. Experiments show that all knowledge integration, self-matching and SPIP modules improve the model performance respectively on three datasets. Moreover, our KI-Net model shows 1.04% performance improvement over the state-of-the-art model on the IEMOCAP dataset.
This paper describes our system that participated in the SemEval-2020 task 4: Commonsense Validation and Explanation. For this task, it is obvious that external knowledge, such as Knowledge graph, can help the model understand commonsense in natural language statements. But how to select the right triples for statements remains unsolved, so how to reduce the interference of irrelevant triples on model performance is a research focus. This paper adopt a modified K-BERT as the language encoder, to enhance language representation through triples from knowledge graphs. Experiments show that our method is better than models without external knowledge, and is slightly better than the original K-BERT. We got an accuracy score of 0.97 in subtaskA, ranking 1/45, and got an accuracy score of 0.948, ranking 2/35.
Although the proper use of idioms can enhance the elegance of writing, the active use of various expressions is a challenge because remembering idioms is difficult. In this study, we address the problem of idiom recommendation by leveraging a neural machine translation framework, in which we suppose that idioms are written with one pseudo target language. Two types of real-life datasets are collected to support this study. Experimental results show that the proposed approach achieves promising performance compared with other baseline methods.
It has been proven that automatic conversational agents can be built up using the Endto-End Neural Response Generation (NRG) framework, and such a data-driven methodology requires a large number of dialog pairs for model training and reasonable evaluation metrics for testing. This paper proposes a Large Scale Domain-Specific Conversational Corpus (LSDSCC) composed of high-quality queryresponse pairs extracted from the domainspecific online forum, with thorough preprocessing and cleansing procedures. Also, a testing set, including multiple diverse responses annotated for each query, is constructed, and on this basis, the metrics for measuring the diversity of generated results are further presented. We evaluate the performances of neural dialog models with the widely applied diversity boosting strategies on the proposed dataset. The experimental results have shown that our proposed corpus can be taken as a new benchmark dataset for the NRG task, and the presented metrics are promising to guide the optimization of NRG models by quantifying the diversity of the generated responses reasonably.
Reasoning is a very important topic and has many important applications in the field of natural language processing. Semantic Evaluation (SemEval) 2018 Task 12 “The Argument Reasoning Comprehension” committed to research natural language reasoning. In this task, we proposed a novel argument reasoning comprehension system, ITNLP-ARC, which use Neural Networks technology to solve this problem. In our system, the LSTM model is involved to encode both the premise sentences and the warrant sentences. The attention model is used to merge the two premise sentence vectors. Through comparing the similarity between the attention vector and each of the two warrant vectors, we choose the one with higher similarity as our system’s final answer.
This paper presents a Generative Adversarial Network (GAN) to model single-turn short-text conversations, which trains a sequence-to-sequence (Seq2Seq) network for response generation simultaneously with a discriminative classifier that measures the differences between human-produced responses and machine-generated ones. In addition, the proposed method introduces an approximate embedding layer to solve the non-differentiable problem caused by the sampling-based output decoding procedure in the Seq2Seq generative model. The GAN setup provides an effective way to avoid noninformative responses (a.k.a “safe responses”), which are frequently observed in traditional neural response generators. The experimental results show that the proposed approach significantly outperforms existing neural response generation models in diversity metrics, with slight increases in relevance scores as well, when evaluated on both a Mandarin corpus and an English corpus.
Semantic Textual Similarity (STS) devotes to measuring the degree of equivalence in the underlying semantic of the sentence pair. We proposed a new system, ITNLP-AiKF, which applies in the SemEval 2017 Task1 Semantic Textual Similarity track 5 English monolingual pairs. In our system, rich features are involved, including Ontology based, word embedding based, Corpus based, Alignment based and Literal based feature. We leveraged the features to predict sentence pair similarity by a Support Vector Regression (SVR) model. In the result, a Pearson Correlation of 0.8231 is achieved by our system, which is a competitive result in the contest of this track.