This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
BiaoFu
Also published as:
彪 付
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
Large language models (LLMs) have demonstrated remarkable multilingual capabilities, however, how to evaluate cross-lingual alignment remains underexplored. Existing alignment benchmarks primarily focus on sentence embeddings, but prior research has shown that neural models tend to induce a non-smooth representation space, which impact of semantic alignment evaluation on low-resource languages. Inspired by neuroscientific findings that similar information activates overlapping neuronal regions, we propose a novel *Neuron State-Based Cross-Lingual Alignment* (NeuronXA) to assess the cross-lingual a lignment capabilities of LLMs, which offers a more semantically grounded approach to assess cross-lingual alignment. We evaluate NeuronXA on several prominent multilingual LLMs (LLaMA, Qwen, Mistral, GLM, and OLMo) across two transfer tasks and three multilingual benchmarks. The results demonstrate that with only 100 parallel sentence pairs, NeuronXA achieves a Pearson correlation of 0.9556 with downstream tasks performance and 0.8524 with transferability. These findings demonstrate NeuronXA’s effectiveness in assessing both cross-lingual alignment and transferability, even with a small dataset. This highlights its potential to advance cross-lingual alignment research and to improve the semantic understanding of multilingual LLMs.
When the complete source sentence is provided, Large Language Models (LLMs) perform excellently in offline machine translation even with a simple prompt “Translate the following sentence from [src lang] into [tgt lang]:”. However, in many real scenarios, the source tokens arrive in a streaming manner and simultaneous machine translation (SiMT) is required, then the efficiency and performance of decoder-only LLMs are significantly limited by their auto-regressive nature. To enable LLMs to achieve high-quality SiMT as efficiently as offline translation, we propose a novel paradigm that includes constructing supervised fine-tuning (SFT) data for SiMT, along with new training and inference strategies. To replicate the token input/output stream in SiMT, the source and target tokens are rearranged into an interleaved sequence, separated by special tokens according to varying latency requirements. This enables powerful LLMs to learn read and write operations adaptively, based on varying latency prompts, while still maintaining efficient auto-regressive decoding. Experimental results show that, even with limited SFT data, our approach achieves state-of-the-art performance across various SiMT benchmarks and different evaluation metrics, and preserves the original capabilities of offline translation. Moreover, our approach generalizes well to document-level SiMT setting without requiring specific fine-tuning, even beyond the offline translation model.
Speech Relation Extraction (SpeechRE) aims to extract relation triplets from speech data. However, existing studies usually use synthetic speech to train and evaluate SpeechRE models, hindering the further development of SpeechRE due to the disparity between synthetic and real speech. Meanwhile, the modality gap issue, unexplored in SpeechRE, limits the performance of existing models. In this paper, we construct two real SpeechRE datasets to facilitate subsequent researches and propose a Multi-level Cross-modal Alignment Model (MCAM) for SpeechRE. Our model consists of three components: 1) a speech encoder, extracting speech features from the input speech; 2) an alignment adapter, mapping these speech features into a suitable semantic space for the text decoder; and 3) a text decoder, autoregressively generating relation triplets based on the speech features. During training, we first additionally introduce a text encoder to serve as a semantic bridge between the speech encoder and the text decoder, and then train the alignment adapter to align the output features of speech and text encoders at multiple levels. In this way, we can effectively train the alignment adapter to bridge the modality gap between the speech encoder and the text decoder. Experimental results and in-depth analysis on our datasets strongly demonstrate the efficacy of our method.
The primary objective of sign language translation (SLT) is to transform sign language videos into natural sentences.A crucial challenge in this field is developing signer-independent SLT systems which requires models to generalize effectively to signers not encountered during training.This challenge is exacerbated by the limited diversity of signers in existing SLT datasets, which often results in suboptimal generalization capabilities of current models.Achieving robustness to unseen signers is essential for signer-independent SLT.However, most existing method relies on signer identity labels, which is often impractical and costly in real-world applications.To address this issue, we propose the Signer Diversity-driven Data Augmentation (SDDA) method that can achieve good generalization without relying on signer identity labels. SDDA comprises two data augmentation schemes. The first is data augmentation based on adversarial training, which aims to utilize the gradients of the model to generate adversarial examples. The second is data augmentation based on diffusion model, which focuses on using the advanced diffusion-based text guided image editing method to modify the appearances of the signer in images. The combination of the two strategies significantly enriches the diversity of signers in the training process.Moreover, we introduce a consistency loss and a discrimination loss to enhance the learning of signer-independent features.Our experimental results demonstrate our model significantly enhances the performance of SLT in the signer-independent setting, achieving state-of-the-art results without relying on signer identity labels.
Pre-trained speech models, such as wav2vec 2.0, have significantly advanced speech-related tasks, including speech recognition and translation. However, their applicability in streaming scenarios is limited because these models are trained on complete utterances, leading to a mismatch with incremental streaming inputs. This paper identifies three critical design aspects within the architecture of wav2vec 2.0 and proposes a novel model, wav2vec-S, which incorporates simple modifications to ensure consistent speech representations during both training and inference phases for streaming speech inputs. Furthermore, we demonstrate that wav2vec-S models can be efficiently adapted from pre-trained wav2vec 2.0 models through continued pre-training and effectively finetuned to meet various latency requirements in downstream applications. Experiments on speech recognition and translation tasks show that wav2vec-S outperforms strong baseline models and achieves a superior balance between quality and latency.
Traditional non-simultaneous Sign Language Translation (SLT) methods, while effective for pre-recorded videos, face challenges in real-time scenarios due to inherent inference delays. The emerging field of simultaneous SLT aims to address this issue by progressively translating incrementally received sign video. However, the sole existing work in simultaneous SLT adopts a fixed gloss-based policy, which suffer from limitations in boundary prediction and contextual comprehension. In this paper, we delve deeper into this area and propose an adaptive policy for simultaneous SLT. Our approach introduces the concept of “confident translation length”, denoting maximum accurate translation achievable from current input. An estimator measures this length for streaming sign video, enabling the model to make informed decisions on whether to wait for more input or proceed with translation. To train the estimator, we construct a training data of confident translation length based on the longest common prefix between translations of partial and complete inputs. Furthermore, we incorporate adaptive training, utilizing pseudo prefix pairs, to refine the offline translation model for optimal performance in simultaneous scenarios. Experimental results on PHOENIX2014T and CSL-Daily demonstrate the superiority of our adaptive policy over existing methods, particularly excelling in situations requiring extremely low latency.
A popular approach to streaming speech translation is to employ a single offline model with a wait-k policy to support different latency requirements, which is simpler than training multiple online models with different latency constraints. However, there is a mismatch problem in using a model trained with complete utterances for streaming inference with partial input. We demonstrate that speech representations extracted at the end of a streaming input are significantly different from those extracted from a complete utterance. To address this issue, we propose a new approach called Future-Aware Streaming Translation (FAST) that adapts an offline ST model for streaming input. FAST includes a Future-Aware Inference (FAI) strategy that incorporates future context through a trainable masked embedding, and a Future-Aware Distillation (FAD) framework that transfers future context from an approximation of full speech to streaming input. Our experiments on the MuST-C EnDe, EnEs, and EnFr benchmarks show that FAST achieves better trade-offs between translation quality and latency than strong baselines. Extensive analyses suggest that our methods effectively alleviate the aforementioned mismatch problem between offline training and online inference.
Recent studies have shown that sequence-to-sequence (seq2seq) models struggle with compositional generalization (CG), i.e., the ability to systematically generalize to unseen compositions of seen components. There is mounting evidence that one of the reasons hindering CG is the representation of the encoder uppermost layer is entangled, i.e., the syntactic and semantic representations of sequences are entangled. However, we consider that the previously identified representation entanglement problem is not comprehensive enough. Additionally, we hypothesize that the source keys and values representations passing into different decoder layers are also entangled. Starting from this intuition, we propose CompoSition (Compose Syntactic and Semantic Representations), an extension to seq2seq models which learns to compose representations of different encoder layers dynamically for different tasks, since recent studies reveal that the bottom layers of the Transformer encoder contain more syntactic information and the top ones contain more semantic information. Specifically, we introduce a composed layer between the encoder and decoder to compose different encoder layers’ representations to generate specific keys and values passing into different decoder layers. CompoSition achieves competitive results on two comprehensive and realistic benchmarks, which empirically demonstrates the effectiveness of our proposal. Codes are available at https://github.com/thinkaboutzero/COMPOSITION.