Bernt Ivar Utstøl Nødland


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Training and Evaluating Norwegian Sentence Embedding Models
Bernt Ivar Utstøl Nødland
Proceedings of the 24th Nordic Conference on Computational Linguistics (NoDaLiDa)

We train and evaluate Norwegian sentence embedding models using the contrastive learning methodology SimCSE. We start from pre-trained Norwegian encoder models and train both unsupervised and supervised models. The models are evaluated on a machine-translated version of semantic textual similarity datasets, as well as binary classification tasks. We show that we can train good Norwegian sentence embedding models, that clearly outperform the pre-trained encoder models, as well as the multilingual mBERT, on the task of sentence similarity.
Search
Co-authors
    Venues
    Fix data