Ben Kantor


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2019

pdf bib
Coreference Resolution with Entity Equalization
Ben Kantor | Amir Globerson
Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics

A key challenge in coreference resolution is to capture properties of entity clusters, and use those in the resolution process. Here we provide a simple and effective approach for achieving this, via an “Entity Equalization” mechanism. The Equalization approach represents each mention in a cluster via an approximation of the sum of all mentions in the cluster. We show how this can be done in a fully differentiable end-to-end manner, thus enabling high-order inferences in the resolution process. Our approach, which also employs BERT embeddings, results in new state-of-the-art results on the CoNLL-2012 coreference resolution task, improving average F1 by 3.6%.