Belal Shoer


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
A Simple Data Augmentation Strategy for Text-in-Image Scientific VQA
Belal Shoer | Yova Kementchedjhieva
Proceedings of the 9th Widening NLP Workshop

Scientific visual question answering poses significant challenges for vision-language models due to the complexity of scientific figures and their multimodal context. Traditional approaches treat the figure and accompanying text (e.g., questions and answer options) as separate inputs. EXAMS-V introduced a new paradigm by embedding both visual and textual content into a single image. However, even state-of-the-art proprietary models perform poorly on this setup in zero-shot settings, underscoring the need for task-specific fine-tuning. To address the scarcity of training data in this “text-in-image” format, we synthesize a new dataset by converting existing separate image-text pairs into unified images. Fine-tuning a small multilingual multimodal model on a mix of our synthetic data and EXAMS-V yields notable gains across 13 languages, demonstrating strong average improvements and cross-lingual transfer.