Bei Wang


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2024

pdf bib
In-Context Example Ordering Guided by Label Distributions
Zhichao Xu | Daniel Cohen | Bei Wang | Vivek Srikumar
Findings of the Association for Computational Linguistics: NAACL 2024

By allowing models to predict without task-specific training, in-context learning (ICL) with pretrained LLMs has enormous potential in NLP. However, a number of problems persist in ICL. In particular, its performance is sensitive to the choice and order of in-context examples. Given the same set of in-context examples with different orderings, model performance may vary from near random to near state-of-the-art. In this work, we formulate in-context example ordering as an optimization problem. We examine three problem settings that differ in the assumptions they make about what is known about the task. Inspired by the idea of learning from label proportions, we propose two principles for in-context example ordering guided by model’s probability predictions. We apply our proposed principles to thirteen text classification datasets and nine different autoregressive LLMs with 700M to 13B parameters. We demonstrate that our approach outperforms the baselines by improving the classification accuracy, reducing model miscalibration, and also by selecting better in-context examples.