Behrad Taghibeyglou


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Who needs context? Classical techniques for Alzheimer’s disease detection
Behrad Taghibeyglou | Frank Rudzicz
Proceedings of the 5th Clinical Natural Language Processing Workshop

Natural language processing (NLP) has shown great potential for Alzheimer’s disease (AD) detection, particularly due to the adverse effect of AD on spontaneous speech. The current body of literature has directed attention toward context-based models, especially Bidirectional Encoder Representations from Transformers (BERTs), owing to their exceptional abilities to integrate contextual information in a wide range of NLP tasks. This comes at the cost of added model opacity and computational requirements. Taking this into consideration, we propose a Word2Vec-based model for AD detection in 108 age- and sex-matched participants who were asked to describe the Cookie Theft picture. We also investigate the effectiveness of our model by fine-tuning BERT-based sequence classification models, as well as incorporating linguistic features. Our results demonstrate that our lightweight and easy-to-implement model outperforms some of the state-of-the-art models available in the literature, as well as BERT models.