Basil K. Raju


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2023

pdf bib
Automatic Speech Recognition System for Malasar Language using Multilingual Transfer Learning
Basil K. Raju | Leena G. Pillai | Kavya Manohar | Elizabeth Sherly
Proceedings of the 20th International Conference on Natural Language Processing (ICON)

This study pioneers the development of an automatic speech recognition (ASR) system for the Malasar language, an extremely low-resource ethnic language spoken by a tribal community in the Western Ghats of South India. Malasar is primarily an oral language which does not have a native script. Therefore, Malasar is often transcribed in Tamil script, a closely related major language. This work presents the first ever effort of leveraging the capabilities of multilingual transfer learning for recognising malasar speech. We fine-tune a pre-trained multilingual transformer model with Malasar speech data. In our endeavour to fine-tune this model using a Malasar speech corpus, we could successfully bring down the WER to 48.00% from 99.08% (zero shot baseline). This work demonstrates the efficacy of multilingual transfer learning in addressing the challenges of ASR for extremely low-resource languages, contributing to the preservation of their linguistic and cultural heritage.