This is an internal, incomplete preview of a proposed change to the ACL Anthology.
For efficiency reasons, we don't generate MODS or Endnote formats, and the preview may be incomplete in other ways, or contain mistakes.
Do not treat this content as an official publication.
BaolinZhang
Also published as:
Baolin ZHANG
Fixing paper assignments
Please select all papers that belong to the same person.
Indicate below which author they should be assigned to.
This paper presents the NLPTEA 2020 shared task for Chinese Grammatical Error Diagnosis (CGED) which seeks to identify grammatical error types, their range of occurrence and recommended corrections within sentences written by learners of Chinese as a foreign language. We describe the task definition, data preparation, performance metrics, and evaluation results. Of the 30 teams registered for this shared task, 17 teams developed the system and submitted a total of 43 runs. System performances achieved a significant progress, reaching F1 of 91% in detection level, 40% in position level and 28% in correction level. All data sets with gold standards and scoring scripts are made publicly available to researchers.
This paper presents the NLPTEA 2018 shared task for Chinese Grammatical Error Diagnosis (CGED) which seeks to identify grammatical error types, their range of occurrence and recommended corrections within sentences written by learners of Chinese as foreign language. We describe the task definition, data preparation, performance metrics, and evaluation results. Of the 20 teams registered for this shared task, 13 teams developed the system and submitted a total of 32 runs. Progress in system performances was obviously, reaching F1 of 36.12% in position level and 25.27% in correction level. All data sets with gold standards and scoring scripts are made publicly available to researchers.
This paper presents the IJCNLP 2017 shared task for Chinese grammatical error diagnosis (CGED) which seeks to identify grammatical error types and their range of occurrence within sentences written by learners of Chinese as foreign language. We describe the task definition, data preparation, performance metrics, and evaluation results. Of the 13 teams registered for this shared task, 5 teams developed the system and submitted a total of 13 runs. We expected this evaluation campaign could lead to the development of more advanced NLP techniques for educational applications, especially for Chinese error detection. All data sets with gold standards and scoring scripts are made publicly available to researchers.
This paper presents the NLP-TEA 2016 shared task for Chinese grammatical error diagnosis which seeks to identify grammatical error types and their range of occurrence within sentences written by learners of Chinese as foreign language. We describe the task definition, data preparation, performance metrics, and evaluation results. Of the 15 teams registered for this shared task, 9 teams developed the system and submitted a total of 36 runs. We expected this evaluation campaign could lead to the development of more advanced NLP techniques for educational applications, especially for Chinese error detection. All data sets with gold standards and scoring scripts are made publicly available to researchers.