Balkız Öztürk


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2018

pdf bib
A Morphology-Based Representation Model for LSTM-Based Dependency Parsing of Agglutinative Languages
Şaziye Betül Özateş | Arzucan Özgür | Tunga Güngör | Balkız Öztürk
Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies

We propose two word representation models for agglutinative languages that better capture the similarities between words which have similar tasks in sentences. Our models highlight the morphological features in words and embed morphological information into their dense representations. We have tested our models on an LSTM-based dependency parser with character-based word embeddings proposed by Ballesteros et al. (2015). We participated in the CoNLL 2018 Shared Task on multilingual parsing from raw text to universal dependencies as the BOUN team. We show that our morphology-based embedding models improve the parsing performance for most of the agglutinative languages.