Ayush Daksh


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2022

pdf bib
Prabhupadavani: A Code-mixed Speech Translation Data for 25 Languages
Jivnesh Sandhan | Ayush Daksh | Om Adideva Paranjay | Laxmidhar Behera | Pawan Goyal
Proceedings of the 6th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature

Nowadays, the interest in code-mixing has become ubiquitous in Natural Language Processing (NLP); however, not much attention has been given to address this phenomenon for Speech Translation (ST) task. This can be solely attributed to the lack of code-mixed ST task labelled data. Thus, we introduce Prabhupadavani, which is a multilingual code-mixed ST dataset for 25 languages. It is multi-domain, covers ten language families, containing 94 hours of speech by 130+ speakers, manually aligned with corresponding text in the target language. The Prabhupadavani is about Vedic culture and heritage from Indic literature, where code-switching in the case of quotation from literature is important in the context of humanities teaching. To the best of our knowledge, Prabhupadvani is the first multi-lingual code-mixed ST dataset available in the ST literature. This data also can be used for a code-mixed machine translation task. All the dataset can be accessed at: https://github.com/frozentoad9/CMST.