Avinoor Singh Kohli


Fixing paper assignments

  1. Please select all papers that belong to the same person.
  2. Indicate below which author they should be assigned to.
Provide a valid ORCID iD here. This will be used to match future papers to this author.
Provide the name of the school or the university where the author has received or will receive their highest degree (e.g., Ph.D. institution for researchers, or current affiliation for students). This will be used to form the new author page ID, if needed.

TODO: "submit" and "cancel" buttons here


2025

pdf bib
PASTEL : Polarity-Aware Sentiment Triplet Extraction with LLM-as-a-Judge
Aaditya Bodke | Avinoor Singh Kohli | Hemant Subhash Pardeshi | Prathamesh Bhosale
Findings of the Association for Computational Linguistics: ACL 2025

Aspect Sentiment Triplet Extraction (ASTE) is a subtask of Aspect-Based Sentiment Analysis (ABSA) that aims to extract aspect terms, corresponding opinion terms, and their associated sentiment polarities from text. Current end-to-end approaches, whether employing Large Language Models (LLMs) or complex neural network structures, struggle to effectively model the intricate latent relationships between aspects and opinions. Therefore, in this work, we propose Polarity-Aware Sentiment Triplet Extraction with LLM-as-a-judge (PASTEL), a novel pipeline that decomposes the ASTE task into structured subtasks. We employ finetuned LLMs to separately extract the aspect and opinion terms, incorporating a polarity-aware mechanism to enhance opinion extraction. After generating a candidate set through the Cartesian product of the extracted aspect and opinion-sentiment sets, we leverage an LLM-as-a-Judge to validate and prune these candidates. Experimental evaluations demonstrate that PASTEL outperforms existing baselines. Our findings highlight the necessity of modular decomposition in complex sentiment analysis tasks to fully exploit the capabilities of current LLMs.